[ascl:1512.018]
growl: Growth factor and growth rate of expanding universes

Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

[ascl:1306.002]
grmonty: Relativistic radiative transport Monte Carlo code

grmonty is a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The code models hot accretion flows in the Kerr metric, it incorporates synchrotron emission and absorption and Compton scattering. grmonty can be readily generalized to account for other radiative processes and an arbitrary spacetime.

[ascl:1905.001]
Grizli: Grism redshift and line analysis software

Grizli produces quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. This type of analysis provides complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

[ascl:1702.012]
GRIM: General Relativistic Implicit Magnetohydrodynamics

GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

[ascl:1302.007]
GRID-core: Gravitational Potential Identification of Cores

GRID-core is a core-finding method using the contours of the local gravitational potential to identify core boundaries. The GRID-core method applied to 2D surface density and 3D volume density are in good agreement for bound cores. We have implemented a version of the GRID-core algorithm in IDL, suitable for core-finding in observed maps. The required input is a two-dimensional FITS file containing a map of the column density in a region of a cloud.

[ascl:1701.009]
GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

[ascl:1701.008]
GrayStar: Web-based pedagogical stellar modeling

GrayStar is a web-based pedagogical stellar model. It approximates stellar atmospheric and spectral line modeling in JavaScript with visualization in HTML. It is suitable for a wide range of education and public outreach levels depending on which optional plots and print-outs are turned on. All plots and renderings are pure basic HTML and the plotting module contains original HTML procedures for automatically scaling and graduating x- and y-axes.

[ascl:1403.005]
GRay: Massive parallel ODE integrator

GRay is a massive parallel ordinary differential equation integrator that employs the "stream processing paradigm." It is designed to efficiently integrate billions of photons in curved spacetime according to Einstein's general theory of relativity. The code is implemented in CUDA C/C++.

[ascl:1102.003]
GRAVLENS: Computational Methods for Gravitational Lensing

Modern applications of strong gravitational lensing require the ability to use precise and varied observational data to constrain complex lens models. Two sets of computational methods for lensing calculations are discussed. The first is a new algorithm for solving the lens equation for general mass distributions. This algorithm makes it possible to apply arbitrarily complicated models to observed lenses. The second is an evaluation of techniques for using observational data including positions, fluxes, and time delays of point-like images, as well as maps of extended images, to constrain models of strong lenses. The techniques presented here are implemented in a flexible and user-friendly software package called gravlens, which is made available to the community.

[ascl:1902.004]
GraviDy: Gravitational Dynamics

GraviDy performs N-body 3D visualizations; it is a GPU, direct-summation N-body integrator based on the Hermite scheme and includes relativistic corrections for sources of gravitational radiation. The software is modular, allowing users to readily introduce new physics, and exploits available computational resources. The software can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version.

[ascl:1611.007]
GRASP2K: Relativistic Atomic Structure Package

GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from *jj*- to *LSJ*-coupling, and coefficients of fractional parentage have been extended to *j*=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in *LSJLSJ* intermediate coupling.

[ascl:1609.008]
GRASP: General-purpose Relativistic Atomic Structure Package

GRASP (General-purpose Relativistic Atomic Structure Package) calculates atomic structure, including energy levels, radiative rates (A-values) and lifetimes; it is a fully relativistic code based on the *jj* coupling scheme. This code has been superseded by GRASP2K (ascl:1611.007).

[ascl:1204.006]
GRASIL: Spectral evolution of stellar systems with dust

GRASIL (which stands for GRAphite and SILicate) computes the spectral evolution of stellar systems taking into account the effects of dust, which absorbs and scatters optical and UV photons and emits in the IR-submm region. It may be used as well to do “standard” no-dust stellar spectral synthesis. The code is very well calibrated and applied to interpret galaxies at different redshifts. GRASIL can be downloaded or run online using the GALSYNTH WEB interface.

[ascl:1812.011]
GRAND-HOD: GeneRalized ANd Differentiable Halo Occupation Distribution

GRAND-HOD (GeneRalized ANd Differentiable Halo Occupation Distribution) takes a generalized Halo Occupation Distribution (HOD) prescription as input and outputs the corresponding mock galaxy catalogs in binary files. The code is differentiable and incorporates various generalizations to the standard HOD. It is written for the Abacus simulations, but the main functionalities can be easily adapted for other halo catalogs with the appropriate properties.

[ascl:1011.021]
GRALE: A genetic algorithm for the non-parametric inversion of strong lensing systems

We present a non-parametric technique to infer the projected-mass distribution of a gravitational lens system with multiple strong-lensed images. The technique involves a dynamic grid in the lens plane on which the mass distribution of the lens is approximated by a sum of basis functions, one per grid cell. We used the projected mass densities of Plummer spheres as basis functions. A genetic algorithm then determines the mass distribution of the lens by forcing images of a single source, projected back onto the source plane, to coincide as well as possible. Averaging several tens of solutions removes the random fluctuations that are introduced by the reproduction process of genomes in the genetic algorithm and highlights those features common to all solutions. Given the positions of the images and the redshifts of the sources and the lens, we show that the mass of a gravitational lens can be retrieved with an accuracy of a few percent and that, if the sources sufficiently cover the caustics, the mass distribution of the gravitational lens can also be reliably retrieved. A major advantage of the algorithm is that it makes full use of the information contained in the radial images, unlike methods that minimise the residuals of the lens equation, and is thus able to accurately reconstruct also the inner parts of the lens.

[ascl:1106.008]
GRAFIC-2: Multiscale Gaussian Random Fields for Cosmological Simulations

This paper describes the generation of initial conditions for numerical simulations in cosmology with multiple levels of resolution, or multiscale simulations. We present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementation and testing of a computer code package performing this refinement called GRAFIC-2.

[ascl:1010.080]
GRACOS: Scalable and Load Balanced P3M Cosmological N-body Code

The GRACOS (GRAvitational COSmology) code, a parallel implementation of the particle-particle/particle-mesh (P3M) algorithm for distributed memory clusters, uses a hybrid method for both computation and domain decomposition. Long-range forces are computed using a Fourier transform gravity solver on a regular mesh; the mesh is distributed across parallel processes using a static one-dimensional slab domain decomposition. Short-range forces are computed by direct summation of close pairs; particles are distributed using a dynamic domain decomposition based on a space-filling Hilbert curve. A nearly-optimal method was devised to dynamically repartition the particle distribution so as to maintain load balance even for extremely inhomogeneous mass distributions. Tests using $800^3$ simulations on a 40-processor beowulf cluster showed good load balance and scalability up to 80 processes. There are limits on scalability imposed by communication and extreme clustering which may be removed by extending the algorithm to include adaptive mesh refinement.

[ascl:1612.020]
Grackle: Chemistry and radiative cooling library for astrophysical simulations

Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh

The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

[ascl:1010.022]
GR1D: Open-Source Code for Spherically-Symmetric Stellar Collapse to Neutron Stars and Black Holes

GR1D is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D.

[ascl:1906.014]
GPUVMEM: Maximum Entropy Method (MEM) GPU algorithm for radio astronomical image synthesis

Cárcamo, Miguel; Muñoz, Nicolás; Rannou, Fernando; Román, Pablo; Casassus, Simón; Osses, Axel; Moral, Victor

The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. GPUVMEM presents a high performance GPU version of non-gridding MEM.

[ascl:1403.001]
GPU-D: Generating cosmological microlensing magnification maps

GPU-D is a GPU-accelerated implementation of the inverse ray-shooting technique used to generate cosmological microlensing magnification maps. These maps approximate the source plane magnification patterns created by an ensemble of stellar-mass compact objects within a foreground macrolens galaxy. Unlike other implementations, GPU-D solves the gravitational lens equation without any approximation. Due to the high computational intensity and high degree of parallelization inherent in the algorithm, it is ideal for brute-force implementation on GPUs. GPU-D uses CUDA for GPU acceleration and require NVIDIA devices to run.

[ascl:1411.018]
GPI Pipeline: Gemini Planet Imager Data Pipeline

The GPI data pipeline allows users to reduce and calibrate raw GPI data into spectral and polarimetric datacubes, and to apply various PSF subtraction methods to those data. Written in IDL and available in a compiled version, the software includes an integrated calibration database to manage reference files and an interactive data viewer customized for high contrast imaging that allows exploration and manipulation of data.

[ascl:1603.004]
gPhoton: Time-tagged GALEX photon events analysis tools

Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

[ascl:1512.006]
GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

[ascl:1210.001]
GP2PCF: Brute-force computation of 2-point correlation functions

The two-point correlation function is a simple statistic that quantifies the clustering of a given distribution of objects. In studies of the large scale structure of the Universe, it is an important tool containing information about the matter clustering and the evolution of the Universe at different cosmological epochs. A classical application of this statistic is the galaxy-galaxy correlation function to find constraints on the parameter Omega_m or the location of the baryonic acoustic oscillation peak. This calculation, however, is very expensive in terms of computer power and Graphics Processing Units provide one solution for efficient analysis of the increasingly larger galaxy surveys that are currently taking place.

GP2PCF is a public code in CUDA for performing this computation; with a single GPU board it is possible to achieve 120-fold speedups with respect to a standard implementation in C running on a single CPU. With respect to other solutions such as k-trees the improvement is of a factor of a few retaining full precision. The speedup is comparable to running in parallel in a cluster of O(100) cores.

[ascl:1210.003]
GOSSIP: SED fitting code

GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.

[ascl:1801.009]
Gnuastro: GNU Astronomy Utilities

Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

[ascl:1708.013]
GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1402.002]
Glue: Linked data visualizations across multiple files

Glue, written in Python, links visualizations of scientific datasets across many files, allowing for interactive, linked statistical graphics of multiple files. It supports many file formats including common image formats (jpg, tiff, png), ASCII tables, astronomical image and table formats (FITS, VOT, IPAC), and HDF5. Custom data loaders can also be easily added. Glue is highly scriptable and extendable.

[ascl:1807.019]
GLS: Generalized Lomb-Scargle periodogram

The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. GLS is a solution for the generalization to a full sine wave fit, including an offset and weights (χ2 fitting). Compared to the Lomb-Scargle periodogram, GLS is superior as it provides more accurate frequencies, is less susceptible to aliasing, and gives a much better determination of the spectral intensity.

[ascl:1011.010]
Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available in the archive file at the link below.

[ascl:1110.008]
Glnemo2: Interactive Visualization 3D Program

Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface.

Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

[ascl:1802.010]
Glimpse: Sparsity based weak lensing mass-mapping tool

Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

[ascl:1103.006]
GLESP 2.0: Gauss-Legendre Sky Pixelization for CMB Analysis

Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

GLESP is a pixelization scheme for the cosmic microwave background (CMB) radiation maps. This scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map.

[ascl:1806.009]
GLASS: Parallel, free-form gravitational lens modeling tool and framework

GLASS models strong gravitational lenses. It produces an ensemble of possible models that fit the observed input data and conform to certain constraints specified by the user. GLASS makes heavy use of the numerical routines provided by the numpy and scipy packages as well as the linear programming package GLPK. This latter package, and its Python interface, is provided with GLASS and installs automatically in the GLASS build directory.

[ascl:1010.012]
glafic: Software Package for Analyzing Gravitational Lensing

glafic is a public software package for analyzing gravitational lensing. It offers many features including computations of various lens properties for many mass models, solving the lens equation using an adaptive grid algorithm, simulations of lensed extended images with PSF convolved, and efficient modeling of observed strong lens systems.

[ascl:1812.002]
GLADIS: GLobal Accretion Disk Instability Simulation

GLADIS (GLobal Accretion Disk Instability Simulation) computes the time-dependent evolution of a black hole accretion disk, in one-dimensional, axisymmetric, vertically integrated scheme. The code solves two partial-differential equations of hydrodynamics for surface density and temperature evolution, *i.e.*, given by viscous diffusion and energy conservation. Accretion disks can be subject to radiation-pressure instability if the stress tensor is proportional to the total (gas plus radiation) pressure. In the gas-pressure dominated case there is no instability. An intermediate case is provided in the code by the square root of the gas and total pressures. GLADIS is parallelized with MPI, and sample .ini and run command files are provided with the code.

[ascl:1805.025]
GLACiAR: GaLAxy survey Completeness AlgoRithm

GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

[submitted]
GizmoAnalysis: read and analyze Gizmo simulations

GizmoAnalysis reads and analyzes N-body simulations run with the Gizmo code (ascl:1410.003). Written in Python 3, we developed it primarily to analyze FIRE simulations, though it is useable with any Gizmo snapshot files. It offers the following functionality: reads snapshot files and converts particle data to physical units; provides a flexible dictionary class to store particle data and compute derived quantities on the fly; plots images and properties of particles; generates region files for input to MUSIC (ascl:1311.011) to generate cosmological zoom-in initial conditions; computes rates of supernovae and stellar winds, including their nucleosynthetic yields, as used in FIRE simulations. Includes a Jupyter notebook tutorial.

[ascl:1410.003]
GIZMO: Multi-method magneto-hydrodynamics+gravity code

GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

[ascl:1907.025]
GIST: Galaxy IFU Spectroscopy Tool

Bittner, A.; Falcón-Barroso, J.; Nedelchev, B.; Dorta, A.; Gadotti, D. A.; Sarzi, M.; Molaeinezhad, A.; Iodice, E.; Rosado-Belza, D.; de Lorenzo-Cáceres, A.; Fragkoudi, F.; Galán-de Anta, P. M.; Husemann, B.; Méndez-Abreu, J.; Neumann, J.; Pinna, F.; Querejeta, M.; Sánchez-Blázquez, P.; Seidel, M. K.

GIST (Galaxy IFU Spectroscopy Tool) provides a convenient all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data, conducting all the steps from the preparation of input data to the scientific analysis and to the production of publication-quality plots. In its basic set-up, the GIST pipeline extracts stellar kinematics, performs an emission-line analysis, and derives stellar population properties from full spectral fitting and via the measurement of absorption line-strength indices by exploiting pPXF (ascl:1210.002)and GandALF routines. The pipeline is not specific to any instrument or analysis technique, and includes a dedicated visualization routine with a sophisticated graphical user interface for fully interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models.

[ascl:1810.012]
GiRaFFE: General relativistic force-free electrodynamics code

GiRaFFE leverages the Einstein Toolkit's (ascl:1102.014) highly-scalable infrastructure to create large-scale simulations of magnetized plasmas in strong, dynamical spacetimes on adaptive-mesh refinement (AMR) grids. It is based on IllinoisGRMHD, a user-friendly, open-source, dynamical-spacetime GRMHD code, and is highly scalable, to tens of thousands of cores.

[ascl:1109.018]
GIPSY: Groningen Image Processing System

GIPSY is an acronym of Groningen Image Processing SYstem. It is a highly interactive software system for the reduction and display of astronomical data. It supports multi-tasking using a versatile user interface, it has an advanced data structure, a powerful script language and good display facilities based on the X Window system.

GIPSY consists of a number of components which can be divided into a number of classes:

- The user interfaces. Currently two user interfaces are available; one for interactive work and one for batch processing.
- The data structure.
- The display utilities.
- The application programs. These are the majority of programs.

[ascl:1303.020]
Ginga: Flexible FITS viewer

Ginga is a viewer for astronomical data FITS (Flexible Image Transport System) files; the viewer centers around a FITS display widget which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, the FITS viewer provides a flexible plugin framework for extending the viewer with many different features. A fairly complete set of "standard" plugins are provided for expected features of a modern viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, and others. This viewer was written by software engineers at Subaru Telescope, National Astronomical Observatory of Japan, and is in use at that facility.

[ascl:1004.001]
GIM2D: Galaxy IMage 2D

GIM2D (Galaxy IMage 2D) is an IRAF/SPP package written to perform detailed bulge/disk decompositions of low signal-to-noise images of distant galaxies in a fully automated way. GIM2D takes an input image from HST or ground-based telescopes and outputs a galaxy-subtracted image as well as a catalog of structural parameters.

[ascl:1305.010]
GILDAS: Grenoble Image and Line Data Analysis Software

GILDAS is a collection of software oriented toward (sub-)millimeter radioastronomical applications (either single-dish or interferometer). It has been adopted as the IRAM standard data reduction package and is jointly maintained by IRAM & CNRS. GILDAS contains many facilities, most of which are oriented towards spectral line mapping and many kinds of 3-dimensional data. The code, written in Fortran-90 with a few parts in C/C++ (mainly keyboard interaction, plotting, widgets), is easily extensible.

[ascl:1112.005]
GIDGET: Gravitational Instability-Dominated Galaxy Evolution Tool

Observations of disk galaxies at z~2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. GIDGET is a 1D simulation code, which we have made publicly available, that economically evolves these galaxies from z~2 to z~0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H$_2$ regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z~2 decreases along with the cosmological accretion rate, while at lower redshift, the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

[ascl:1107.002]
GIBIS: Gaia Instrument and Basic Image Simulator

GIBIS is a pixel-level simulator of the Gaia mission. It is intended to simulate how the Gaia instruments will observe the sky, using realistic simulations of the astronomical sources and of the instrumental properties. It is a branch of the global Gaia Simulator under development within the Gaia DPAC CU2 Group (Data Simulations). Access is currently restricted to Gaia DPAC teams.

[ascl:1112.008]
GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1510.001]
GGADT: Generalized Geometry Anomalous Diffraction Theory

GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

[ascl:1509.008]
GFARGO: FARGO for GPU

GFARGO is a GPU version of FARGO (ascl:1102.017). It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

[ascl:1608.014]
gevolution: General Relativity Cosmological N-body code for evolution of large scale structures

The N-body code *gevolution* complies with general relativity principles at every step; it calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation written in terms of a canonical momentum to remain valid for relativistic particles. *gevolution* can be extended to include different kinds of dark energy or modified gravity models, going beyond the usually adopted quasi-static approximation. A weak field expansion is the central element of *gevolution*; this permits the code to treat settings in which no strong gravitational fields appear, including arbitrary scenarios with relativistic sources as long as gravitational fields are not very strong. The framework is well suited for cosmology, but may also be useful for astrophysical applications with moderate gravitational fields where a Newtonian treatment is insufficient.

[ascl:1507.014]
getsources: Multi-scale, multi-wavelength source extraction

*getsources* is a powerful multi-scale, multi-wavelength source extraction algorithm. It analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands, cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. *getsources* offers several advantages over other existing methods of source extraction, including the filtering out of irrelevant spatial scales to improve detectability, especially in the crowded regions and for extended sources, the ability to combine data over all wavebands, and the full automation of the extraction process.

[ascl:1705.007]
getimages: Background derivation and image flattening method

*getimages* performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of *getimages* that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. *getimages* also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from *getsources* (ascl:1507.014), which must be installed.

[ascl:1512.002]
GetData: A filesystem-based, column-oriented database format for time-ordered binary data

The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

[ascl:1412.012]
GeoTOA: Geocentric TOA tools

GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, FSSC Science Tools, and Tempo2 (ascl:1210.015).

[ascl:1511.015]
George: Gaussian Process regression

George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

[ascl:1011.015]
Geokerr: Computing Photon Orbits in a Kerr Spacetime

Relativistic radiative transfer problems require the calculation of photon trajectories in curved spacetime. Programmed in Fortran, Geokerr uses a novel technique for rapid and accurate calculation of null geodesics in the Kerr metric. The equations of motion from the Hamilton-Jacobi equation are reduced directly to Carlson's elliptic integrals, simplifying algebraic manipulations and allowing all coordinates to be computed semi-analytically for the first time.

[ascl:1706.006]
GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1812.014]
GENGA: Gravitational ENcounters with Gpu Acceleration

GENGA (Gravitational ENcounters with Gpu Acceleration) integrates planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. It uses mixed variable integration when the motion is a perturbed Kepler orbit and combines this with a direct N-body Bulirsch-Stoer method during close encounters. It supports three simulation modes: 1.) integration of up to 2048 massive bodies; 2.) integration with up to a million test particles; and 3.) parallel integration of a large number of individual planetary systems.

[ascl:1212.005]
General complex polynomial root solver

This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.

[ascl:1007.003]
GEMINI: A toolkit for analytical models of two-point correlations and inhomogeneous structure formation

Gemini is a toolkit for analytical models of two-point correlations and inhomogeneous structure formation. It extends standard Press-Schechter theory to inhomogeneous situations, allowing a realistic, analytical calculation of halo correlations and bias.

[ascl:1608.006]
Gemini IRAF: Data reduction software for the Gemini telescopes

The Gemini IRAF package processes observational data obtained with the Gemini telescopes. It is an external package layered upon IRAF and supports data from numerous instruments, including FLAMINGOS-2, GMOS-N, GMOS-S, GNIRS, GSAOI, NIFS, and NIRI. The Gemini IRAF package is organized into sub-packages; it contains a generic tools package, "gemtools", along with instrument-specific packages. The raw data from the Gemini facility instruments are stored as Multi-Extension FITS (MEF) files. Therefore, all the tasks in the Gemini IRAF package, intended for processing data from the Gemini facility instruments, are capable of handling MEF files.

[ascl:1010.079]
Geant4: A Simulation Toolkit for the Passage of Particles through Matter

Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

[ascl:1811.018]
gdr2_completeness: GaiaDR2 data retrieval and manipulation

gdr2_completeness queries Gaia DR2 TAP services and divides the queries into sub-queries chunked into arbitrary healpix bins. Downloaded data are formatted into arrays. Internal completeness is calculated by dividing the total starcount and starcounts with an applied cut (*e.g.*, radial velocity measurement and good parallax). Independent determination of the external GDR2 completeness per healpix (level 6) and G magnitude bin (3 coarse bins: 8-12,12-15,15-18) is inferred from a crossmatch with 2MASS data. The overall completeness of a specific GDR2 sample can be approximated by multiplying the internal with the external completeness map, which is useful when data are compared to models thereof. Jupyter notebooks showcasing both utilities enable the user to easily construct the overall completeness for arbitrary samples of the GDR2 catalogue.

[ascl:1303.019]
GBTIDL: Reduction and Analysis of GBT Spectral Line Data

GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

[ascl:1710.014]
GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1907.020]
GaussPy+: Gaussian decomposition package for emission line spectra

Riener, Manuel; Kainulainen, Jouni; Henshaw, Jonathan D.; Orkisz, Jan H.; Murray, Claire E.; Beuther, Henrik

GaussPy+ is a fully automated Gaussian decomposition package for emission line spectra. It is based on GaussPy (ascl:1907.019) and offers several improvements, including automating preparatory steps and providing an accurate noise estimation, improving the fitting routine, and providing a routine to refit spectra based on neighboring fit solutions. GaussPy+ handles complex emission and low to moderate signal-to-noise values.

[ascl:1907.019]
GaussPy: Python implementation of the Autonomous Gaussian Decomposition algorithm

GaussPy implements the Autonomous Gaussian Decomposition (AGD) algorithm, which uses computer vision and machine learning techniques to provide optimized initial guesses for the parameters of a multi-component Gaussian model automatically and efficiently. The speed and adaptability of AGD allow it to interpret large volumes of spectral data efficiently. Although it was initially designed for applications in radio astrophysics, AGD can be used to search for one-dimensional Gaussian (or any other single-peaked spectral profile)-shaped components in any data set. To determine how many Gaussian functions to include in a model and what their parameters are, AGD uses a technique called derivative spectroscopy. The derivatives of a spectrum can efficiently identify shapes within that spectrum corresponding to the underlying model, including gradients, curvature and edges.

[ascl:1305.009]
GaussFit: Solving least squares and robust estimation problems

GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

[ascl:1406.018]
GAUSSCLUMPS: Gaussian-shaped clumping from a spectral map

GAUSSCLUMPS decomposes a spectral map into Gaussian-shape clumps. The clump-finding algorithm decomposes a spectral data cube by iteratively removing 3-D Gaussians as representative clumps. GAUSSCLUMPS was originally a separate code distribution but is now a contributed package in GILDAS (ascl:1305.010). A reimplementation can also be found in CUPID (ascl:1311.007).

[ascl:1610.007]
gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:1710.019]
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1210.020]
GASGANO: Data File Organizer

GASGANO is a GUI software tool for managing and viewing data files produced by VLT Control System (VCS) and the Data Flow System (DFS). It is developed and maintained by ESO to help its user community manage and organize astronomical data observed and produced by all VLT compliant telescopes in a systematic way. The software understands FITS, PAF, and ASCII files, and Reduction Blocks, and can group, sort, classify, filter, and search data in addition to allowing the user to browse, view, and manage them.

[ascl:1010.049]
Gas-momentum-kinetic SZ cross-correlations

We present a new method for detecting the missing baryons by generating a template for the kinematic Sunyaev-Zel'dovich effect. The template is computed from the product of a reconstructed velocity field with a galaxy field. We provide maps of such templates constructed from SDSS Data Release 7 spectroscopic data (SDSS VAGC sample) along side with their expected two point correlation functions with CMB temperature anisotropies. Codes of generating such coefficients of the two point correlation function are also released to provide users of the gas-momentum map a way to change the parameters such as cosmological parameters, reionization history, ionization parameters, etc.

[ascl:1303.027]
GaPP: Gaussian Processes in Python

The algorithm Gaussian processes can reconstruct a function from a sample of data without assuming a parameterization of the function. The GaPP code can be used on any dataset to reconstruct a function. It handles individual error bars on the data and can be used to determine the derivatives of the reconstructed function. The data sample can consist of observations of the function and of its first derivative.

[ascl:1602.015]
GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.

[ascl:1708.012]
GANDALF: Gas AND Absorption Line Fitting

Sarzi, Marc; Falcón-Barroso, Jesús; Davies, Roger L.; Bacon, Roland; Bureau, Martin; Cappellari, Michele; de Zeeuw, P. Tim; Emsellem, Eric; Fathi, Kambiz; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1105.011]
Ganalyzer: A tool for automatic galaxy image analysis

Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

[ascl:1711.014]
Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1110.007]
GammaLib: Toolbox for High-level Analysis of Astronomical Gamma-ray Data

The GammaLib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements instruments specific functionalities such as instrument response functions and data formats. Instrument specific functionalities share a common interface to allow for extension of the GammaLib to include new gamma-ray instruments. The GammaLib provides an abstract data analysis framework that enables simultaneous multi-mission analysis.

[ascl:1612.017]
GAMER: GPU-accelerated Adaptive MEsh Refinement code

GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

[ascl:1708.030]
GAMBIT: Global And Modular BSM Inference Tool

The GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1304.003]
GALSVM: Automated Morphology Classification

GALSVM is IDL software for automated morphology classification. It was specially designed for high redshift data but can be used at low redshift as well. It analyzes morphologies of galaxies based on a particular family of learning machines called support vector machines. The method can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions. It is fully automated and consequently well adapted to large cosmological surveys.

[ascl:1711.010]
galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1711.007]
galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1402.009]
GalSim: Modular galaxy image simulation toolkit

GalSim is a fast, modular software package for simulation of astronomical images. Though its primary purpose is for tests of weak lensing analysis methods, it can be used for other purposes. GalSim allows galaxies and PSFs to be represented in a variety of ways, and can apply shear, magnification, dilation, or rotation to a galaxy profile including lensing-based models from a power spectrum or NFW halo profile. It can write images in regular FITS files, FITS data cubes, or multi-extension FITS files. It can also compress the output files using various compressions including gzip, bzip2, and rice. The user interface is in python or via configuration scripts, and the computations are done in C++ for speed.

[ascl:1411.008]
galpy: Galactic dynamics package

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

[ascl:1010.028]
GALPROP: Code for Cosmic-ray Transport and Diffuse Emission Production

GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation. The GALPROP code incorporates as much realistic astrophysical input as possible together with latest theoretical developments. The code calculates the propagation of cosmic-ray nuclei, antiprotons, electrons and positrons, and computes diffuse γ-rays and synchrotron emission in the same framework. Each run of the code is governed by a configuration file allowing the user to specify and control many details of the calculation. Thus, each run of the code corresponds to a potentially different "model." The code continues to be developed and is available to the scientific community.

[ascl:1611.006]
GalPot: Galaxy potential code

GalPot finds the gravitational potential associated with axisymmetric density profiles. The package includes code that performs transformations between commonly used coordinate systems for both positions and velocities (the class OmniCoords), and that integrates orbits in the potentials. GalPot is a stand-alone version of Walter Dehnen's GalaxyPotential C++ code taken from the falcON code in the NEMO Stellar Dynamics Toolbox (ascl:1010.051).

[ascl:1501.014]
GalPaK 3D: Galaxy parameters and kinematics extraction from 3D data

GalPaK 3D extracts the intrinsic (i.e. deconvolved) galaxy parameters and kinematics from any 3-dimensional data. The algorithm uses a disk parametric model with 10 free parameters (which can also be fixed independently) and a MCMC approach with non-traditional sampling laws in order to efficiently probe the parameter space. More importantly, it uses the knowledge of the 3-dimensional spread-function to return the intrinsic galaxy properties and the intrinsic data-cube. The 3D spread-function class is flexible enough to handle any instrument.

GalPaK 3D can simultaneously constrain the kinematics and morphological parameters of (non-merging, i.e. regular) galaxies observed in non-optimal seeing conditions and can also be used on AO data or on high-quality, high-SNR data to look for non-axisymmetric structures in the residuals.

[ascl:1903.005]
Galmag: Computation of realistic galactic magnetic fields

Galmag computes galactic magnetic fields based on mean field dynamo theory. Written in Python, Galmag allows quick exploration of solutions to the mean field dynamo equation based on galaxy parameters specified by the user, such as the scale height profile and the galaxy rotation curves. The magnetic fields are solenoidal by construction and can be helical.

[ascl:1711.011]
galkin: Milky Way rotation curve data handler

galkin is a compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimized to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements collected from almost four decades of literature. The user-friendly software provided selects, treats and retrieves the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.

[ascl:1903.010]
GalIMF: Galaxy-wide Initial Mass Function

GalIMF (Galaxy-wide Initial Mass Function) computes the galaxy-wide initial stellar mass function by integrating over a whole galaxy, parameterized by star formation rate and metallicity. The generated stellar mass distribution depends on the galaxy-wide star formation rate (SFR, which is related to the total mass of a galalxy) and the galaxy-wide metallicity. The code can generate a galaxy-wide IMF (IGIMF) and can also generate all the stellar masses within a galaxy with optimal sampling (OSGIMF). To compute the IGIMF or the OSGIMF, the GalIMF module contains all local IMF properties (e.g. the dependence of the stellar IMF on the metallicity, on the density of the star-cluster forming molecular cloud cores), and this software module can, therefore, be also used to obtain only the stellar IMF with various prescriptions, or to investigate other features of the stellar population such as what is the most massive star that can be formed in a star cluster.

[ascl:1511.010]
Galileon-Solver: N-body code

Galileon-Solver adds an extra force to PMCode (ascl:9909.001) using a modified Poisson equation to provide a non-linearly transformed density field, with the operations all performed in real space. The code's implicit spherical top-hat assumption only works over fairly long distance averaging scales, where the coarse-grained picture it relies on is a good approximation of reality; it uses discrete Fourier transforms and cyclic reduction in the usual way.

[ascl:1408.008]
GALIC: Galaxy initial conditions construction

GalIC (GALaxy Initial Conditions) is an implementation of an iterative method to construct steady state composite halo-disk-bulge galaxy models with prescribed density distribution and velocity anisotropy that can be used as initial conditions for N-body simulations. The code is parallelized for distributed memory based on MPI. While running, GalIC produces "snapshot files" that can be used as initial conditions files. GalIC supports the three file formats ('type1' format, the slightly improved 'type2' format, and an HDF5 format) of the GADGET (ascl:0003.001) code for its output snapshot files.

[ascl:1510.005]
GALFORM: Galactic modeling

GALFORM is a semi-analytic model for calculating the formation and evolution of galaxies in hierarchical clustering cosmologies. Using a Monte Carlo algorithm to follow the merging evolution of dark matter haloes with arbitrary mass resolution, it incorporates realistic descriptions of the density profiles of dark matter haloes and the gas they contain. It follows the chemical evolution of gas and stars, and the associated production of dust and includes a detailed calculation of the sizes of discs and spheroids.

[ascl:1104.010]
GALFIT: Detailed Structural Decomposition of Galaxy Images

GALFIT is a two-dimensional (2-D) fitting algorithm designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. The algorithm improves on previous techniques in two areas: 1.) by being able to simultaneously fit a galaxy with an arbitrary number of components, and 2.) with optimization in computation speed, suited for working on large galaxy images. 2-D models such as the "Nuker'' law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions are used. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, even simple-looking galaxies generally require at least three components to be modeled accurately rather than the one or two components more often employed. This is illustrated by way of seven case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies.

[ascl:1810.001]
galfast: Milky Way mock catalog generator

galfast generates catalogs for arbitrary, user-supplied Milky Way models, including empirically derived ones. The built-in model set is based on fits to SDSS stellar observations over 8000 deg^{2} of the sky and includes a three-dimensional dust distribution map. Because of the capability to use empirically derived models, galfast typically produces closer matches to the actual observed counts and color-magnitude diagrams. In particular, galfast-generated catalogs are used to derive the stellar component of “Universe Model” catalogs used by the LSST Project. A key distinguishing characteristic of galfast is its speed. Galfast uses the GPU (with kernels written in NVIDIA C/C++ for CUDA) to offload compute intensive model sampling computations to the GPU, enabling the generation of realistic catalogs to full LSST depth in hours (instead of days or weeks), making it possible to study proposed science cases with high precision.

[ascl:1010.033]
GALEV Evolutionary Synthesis Models

GALEV evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological timescales of > 13 Gyr from the onset of star formation shortly after the Big Bang until today.

For galaxies, GALEV includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for a chemically consistent treatment using input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.

[ascl:1812.009]
galclassify: Stellar classifications using a galactic population synthesis model

The stellar classification code galclassify is a stand-alone version of Galaxia (ascl:1101.007). It classifies and generates a synthetic population for each star using input containing observables in a fixed format rather than using a precomputed population over a large field. It is suitable for individual stellar classifications, but slow if you want to classify large samples of stars.

[ascl:1702.006]
GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

[ascl:1312.010]
GalaxyCount: Galaxy counts and variance calculator

GalaxyCount calculates the number and standard deviation of galaxies in a magnitude limited observation of a given area. The methods to calculate both the number and standard deviation may be selected from different options. Variances may be computed for circular, elliptical and rectangular window functions.

[ascl:1904.002]
GALAXY: N-body simulation software for isolated, collisionless stellar systems

GALAXY evolves (almost) isolated, collisionless stellar systems, both disk-like and ellipsoidal. In addition to the N-body code galaxy, which offers eleven different methods to compute the gravitational accelerations, the package also includes sophisticated set-up and analysis software. While not as versatile as tree codes, for certain restricted applications the particle-mesh methods in GALAXY are 50 to 200 times faster than a widely-used tree code. After reading in data providing the initial positions, velocities, and (optionally) masses of the particles, GALAXY compute the gravitational accelerations acting on each particle and integrates forward the velocities and positions of the particles for a short time step, repeating these two steps as desired. Intermediate results can be saved, as can the final moment in a state from which the integration could be resumed. Particles can have individual masses and their motion can be integrated using a range of time steps for greater efficiency; message-passing-interface (MPI) calls are available to enable GALAXY's use on parallel machines with high efficiency.

[ascl:1101.007]
Galaxia: A Code to Generate a Synthetic Survey of the Milky Way

We present here a fast code for creating a synthetic survey of the Milky Way. Given one or more color-magnitude bounds, a survey size and geometry, the code returns a catalog of stars in accordance with a given model of the Milky Way. The model can be specified by a set of density distributions or as an N-body realization. We provide fast and efficient algorithms for sampling both types of models. As compared to earlier sampling schemes which generate stars at specified locations along a line of sight, our scheme can generate a continuous and smooth distribution of stars over any given volume. The code is quite general and flexible and can accept input in the form of a star formation rate, age metallicity relation, age velocity dispersion relation and analytic density distribution functions. Theoretical isochrones are then used to generate a catalog of stars and support is available for a wide range of photometric bands. As a concrete example we implement the Besancon Milky Way model for the disc. For the stellar halo we employ the simulated stellar halo N-body models of Bullock & Johnston (2005). In order to sample N-body models, we present a scheme that disperses the stars spawned by an N-body particle, in such a way that the phase space density of the spawned stars is consistent with that of the N-body particles. The code is ideally suited to generating synthetic data sets that mimic near future wide area surveys such as GAIA, LSST and HERMES. As an application we study the prospect of identifying structures in the stellar halo with a simulated GAIA survey.

[ascl:1901.005]
Galaxia_wrap: Galaxia wrapper for generating mock stellar surveys

Galaxia_wrap is a python wrap around the popular Galaxia tool (ascl:1101.007) for generating mock stellar surveys, such as a magnitude limited survey, using a built-in Galaxy model or directly from n-body data. It also offers n-body functionality and has been used to infer the age distribution of a specific stellar tracer population.

[ascl:1104.005]
GALAXEV: Evolutionary Stellar Population Synthesis Models

GALAXEV is a library of evolutionary stellar population synthesis models computed using the new isochrone synthesis code of Bruzual & Charlot (2003). This code allows one to computes the spectral evolution of stellar populations in wide ranges of ages and metallicities at a resolution of 3 Å across the whole wavelength range from 3200 Å to 9500 Å, and at lower resolution outside this range.

[ascl:1503.002]
Galax2d: 2D isothermal Euler equations solver

Galax2d computes the 2D stationary solution of the isothermal Euler equations of gas dynamics in a rotating galaxy with a weak bar. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretization of the equations for a steady-state solution, using a consistent linearization and a direct solver. The code can be applied as a tool for generating flow models if used on not too fine meshes, up to 256 by 256 cells for half a disk in polar coordinates.

[ascl:1710.022]
galario: Gpu Accelerated Library for Analyzing Radio Interferometer Observations

The galario library exploits the computing power of modern graphic cards (GPUs) to accelerate the comparison of model predictions to radio interferometer observations. It speeds up the computation of the synthetic visibilities given a model image (or an axisymmetric brightness profile) and their comparison to the observations.

[ascl:1203.002]
GALAPAGOS: Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor

GALAPAGOS, Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor (ascl:1010.064), automates source detection, two-dimensional light-profile Sersic modelling and catalogue compilation in large survey applications. Based on a single setup, GALAPAGOS can process a complete set of survey images. It detects sources in the data, estimates a local sky background, cuts postage stamp images for all sources, prepares object masks, performs Sersic fitting including neighbours and compiles all objects in a final output catalogue. For the initial source detection GALAPAGOS applies SExtractor, while GALFIT (ascl:1104.010) is incorporated for modelling Sersic profiles. It measures the background sky involved in the Sersic fitting by means of a flux growth curve. GALAPAGOS determines postage stamp sizes based on SExtractor shape parameters. In order to obtain precise model parameters GALAPAGOS incorporates a complex sorting mechanism and makes use of multiplexing capabilities. It combines SExtractor and GALFIT data in a single output table. When incorporating information from overlapping tiles, GALAPAGOS automatically removes multiple entries from identical sources. GALAPAGOS is programmed in the Interactive Data Language, IDL. A C implementation of the software, GALAPAGOS-C (ascl:1408.011), is available.

[ascl:1408.011]
GALAPAGOS-C: Galaxy Analysis over Large Areas

GALAPAGOS-C is a C implementation of the IDL code GALAPAGOS (ascl:1203.002). It processes a complete set of survey images through automation of source detection via SExtractor (ascl:1010.064), postage stamp cutting, object mask preparation, sky background estimation and complex two-dimensional light profile Sérsic modelling via GALFIT (ascl:1104.010). GALAPAGOS-C uses MPI-parallelization, thus allowing quick processing of large data sets. The code can fit multiple Sérsic profiles to each galaxy, each representing distinct galaxy components (e.g. bulge, disc, bar), and optionally can fit asymmetric Fourier mode distortions.

[ascl:1303.018]
Galactus: Modeling and fitting of galaxies from neutral hydrogen (HI) cubes

Galactus, written in python, is an astronomical software tool for the modeling and fitting of galaxies from neutral hydrogen (HI) cubes. Galactus uses a uniform medium to generate a cube. Galactus can perform the full-radiative transfer for the HI, so can model self-absorption in the galaxy.

[ascl:1108.004]
Galacticus: A Semi-Analytic Model of Galaxy Formation

Galacticus is designed to solve the physics involved in the formation of galaxies within the current standard cosmological framework. It is of a type of model known as “semi-analytic” in which the numerous complex non-linear physics involved are solved using a combination of analytic approximations and empirical calibrations from more detailed, numerical solutions. Models of this type aim to begin with the initial state of the Universe (specified shortly after the Big Bang) and apply physical principles to determine the properties of galaxies in the Universe at later times, including the present day. Typical properties computed include the mass of stars and gas in each galaxy, broad structural properties (e.g. radii, rotation speeds, geometrical shape etc.), dark matter and black hole contents, and observable quantities such as luminosities, chemical composition etc.

[ascl:1109.011]
GalactICS: Galaxy Model Building Package

GalactICS generates N-body realizations of axisymmetric galaxy models consisting of disk, bulge and halo. Some of the code is in Fortran 77, using lines longer than 72 characters in some cases. The -e flag in the makefile allow for this for a Solaris f77 compiler. Other programs are written in C. Again, the linking between these routines works on Solaris systems, but may need to be adjusted for other architectures. We have found that linking using f77 instead of ld will often automatically load the appropriate libraries.

The graphics output by some of the programs (dbh, plotforce, diskdf, plothalo) uses the PGPLOT library. Alternatively, remove all calls to routines with names starting with "PG", as well as the -lpgplot flag in the Makefile, and the programs should still run fine.

[ascl:1302.011]
GALA: Stellar atmospheric parameters and chemical abundances

GALA is a freely distributed Fortran code to derive the atmospheric parameters (temperature, gravity, microturbulent velocity and overall metallicity) and abundances for individual species of stellar spectra using the classical method based on the equivalent widths of metallic lines. The abundances of individual spectral lines are derived by using the WIDTH9 code developed by R. L. Kurucz. GALA is designed to obtain the best model atmosphere, by optimizing temperature, surface gravity, microturbulent velocity and metallicity, after rejecting the discrepant lines. Finally, it computes accurate internal errors for each atmospheric parameter and abundance. The code obtains chemical abundances and atmospheric parameters for large stellar samples quickly, thus making GALA an useful tool in the epoch of the multi-object spectrographs and large surveys.

[ascl:1707.006]
Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1403.024]
GAIA: Graphical Astronomy and Image Analysis Tool

GAIA is an image and data-cube display and analysis tool for astronomy. It provides the usual facilities of image display tools, plus more astronomically useful ones such as aperture and optimal photometry, contouring, source detection, surface photometry, arbitrary region analysis, celestial coordinate readout, calibration and modification, grid overlays, blink comparison, defect patching and the ability to query on-line catalogues and image servers. It can also display slices from data-cubes, extract and visualize spectra as well as perform full 3D rendering. GAIA uses the Starlink software environment (ascl:1110.012) and is derived from the ESO SkyCat tool (ascl:1109.019).

[ascl:1108.005]
Gaepsi: Gadget Visualization Toolkit

Feng, Yu; Croft, Rupert A. C.; Di Matteo, Tiziana; Khandai, Nishikanta; Sargent, Randy; Nourbakhsh, Illah; Dille, Paul; Bartley, Chris; Springel, Volker; Jana, Anirban; Gardner, Jeffrey

Gaepsi is a PYTHON extension for visualizing cosmology simulations produced by Gadget. Visualization is the most important facet of Gaepsi, but it also allows data analysis on GADGET simulations with its growing number of physics related subroutines and constants. Unlike mesh based scheme, SPH simulations are directly visible in the sense that a splatting process is required to produce raster images from the simulations. Gaepsi produces images of 2-dimensional line-of-sight projections of the simulation. Scalar fields and vector fields are both supported.

Besides the traditional way of slicing a simulation, Gaepsi also has built-in support of 'Survey-like' domain transformation proposed by Carlson & White. An improved implementation is used in Gaepsi. Gaepsi both implements an interactive shell for plotting and exposes its API for batch processing. When complied with OpenMP, Gaepsi automatically takes the advantage of the multi-core computers. In interactive mode, Gaepsi is capable of producing images of size up to 32000 x 32000 pixels. The user can zoom, pan and rotate the field with a command in on the finger tip. The interactive mode takes full advantages of matplotlib's rich annotating, labeling and image composition facilities. There are also built-in commands to add objects that are commonly used in cosmology simulations to the figures.

[ascl:0003.001]
GADGET-2: A Code for Cosmological Simulations of Structure Formation

The cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, is capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). The implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. GADGET-2 is publicly released to the research community.

[ascl:1801.011]
GABE: Grid And Bubble Evolver

GABE (Grid And Bubble Evolver) evolves scalar fields (as well as other purposes) on an expanding background for non-canonical and non-linear classical field theory. GABE is based on the Runge-Kutta method.

[ascl:1010.015]
Fyris Alpha: Computational Fluid Dynamics Code

Fyris Alpha is a high resolution, shock capturing, multi-phase, up-wind Godunov method hydrodynamics code that includes a variable equation of state and optional microphysics such as cooling, gravity and multiple tracer variables. The code has been designed and developed for use primarily in astrophysical applications, such as galactic and interstellar bubbles, hypersonic shocks, and a range of jet phenomena. Fyris Alpha boasts both higher performance and more detailed microphysics than its predecessors, with the aim of producing output that is closer to the observational domain, such as emission line fluxes, and eventually, detailed spectral synthesis. Fyris Alpha is approximately 75,000 lines of C code; it encapsulates the split sweep semi-lagrangian remap PPM method used by ppmlr (in turn developed from VH1, Blondin et al. 1998) but with an improved Riemann solver, which is derived from the exact solver of Gottlieb and Groth (1988), a significantly faster solution than previous solvers. It has a number of optimisations that have improved the speed so that additional calculations neeed for multi-phase simulations become practical.

[ascl:1205.005]
Fv: Interactive FITS file editor

[ascl:1112.002]
Funtools: FITS Users Need Tools

Funtools is a "minimal buy-in" FITS library and utility package developed at the the High Energy Astrophysics Division of SAO. The Funtools library provides simplified access to a wide array of file types: standard astronomical FITS images and binary tables, raw arrays and binary event lists, and even tables of ASCII column data. A sophisticated region filtering library (compatible with ds9) filters images and tables using boolean operations between geometric shapes, support world coordinates, etc. Funtools also supports advanced capabilities such as optimized data searching using index files.

Because Funtools consists of a library and a set of user programs, it is most appropriately built from source. Funtools has been ported to Solaris, Linux, LinuxPPC, SGI, Alpha OSF1, Mac OSX (darwin) and Windows 98/NT/2000/XP. Once the source code tar file is retrieved, Funtools can be built and installed easily using standard commands.

[ascl:9912.002]
FTOOLS: A general package of software to manipulate FITS files

FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. The FTOOLS package contains many utility programs which perform modular tasks on any FITS image or table, as well as higher-level analysis programs designed specifically for data from current and past high energy astrophysics missions. The utility programs for FITS tables are especially rich and powerful, and provide functions for presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual FTOOLS programs can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. FTOOLS development began in 1991 and has produced the main set of data analysis software for the current ASCA and RXTE space missions and for other archival sets of X-ray and gamma-ray data. The FTOOLS software package is supported on most UNIX platforms and on Windows machines. The user interface is controlled by standard parameter files that are very similar to those used by IRAF. The package is self documenting through a stand alone help task called fhelp. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.

[ascl:1711.003]
FTbg: Background removal using Fourier Transform

FTbg performs Fourier transforms on FITS images and separates low- and high-spatial frequency components by a user-specified cut. Both components are then inverse Fourier transformed back to image domain. FTbg can remove large-scale background/foreground emission in many astrophysical applications. FTbg has been designed to identify and remove Galactic background emission in Herschel/Hi-GAL continuum images, but it is applicable to any other (e.g., Planck) images when background/foreground emission is a concern.

[ascl:1010.043]
FSPS: Flexible Stellar Population Synthesis

FSPS is a flexible SPS package that allows the user to compute simple stellar populations (SSPs) for a range of IMFs and metallicities, and for a variety of assumptions regarding the morphology of the horizontal branch, the blue straggler population, the post--AGB phase, and the location in the HR diagram of the TP-AGB phase. From these SSPs the user may then generate composite stellar populations (CSPs) for a variety of star formation histories (SFHs) and dust attenuation prescriptions. Outputs include the "observed" spectra and magnitudes of the SSPs and CSPs at arbitrary redshift. In addition to these fortran routines, several IDL routines are provided that allow easy manipulation of the output. FSPS was designed with the intention that the user would make full use of the provided fortran routines. However, the full FSPS package is quite large, and requires some time for the user to become familiar with all of the options and syntax. Some users may only need SSPs for a range of metallicities and IMFs. For such users, standard SSP sets for several IMFs, evolutionary tracks, and spectral libraries are available here.

[ascl:1710.012]
FSFE: Fake Spectra Flux Extractor

The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

[ascl:1506.006]
fsclean: Faraday Synthesis CLEAN imager

Fsclean produces 3D Faraday spectra using the Faraday synthesis method, transforming directly from multi-frequency visibility data to the Faraday depth-sky plane space. Deconvolution is accomplished using the CLEAN algorithm, and the package includes Clark and Högbom style CLEAN algorithms. Fsclean reads in MeasurementSet visibility data and produces HDF5 formatted images; it handles images and data of arbitrary size, using scratch HDF5 files as buffers for data that is not being immediately processed, and is limited only by available disk space.

[ascl:1406.006]
FROG: Time-series analysis

FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

[ascl:1508.004]
FRELLED: FITS Realtime Explorer of Low Latency in Every Dimension

FRELLED (FITS Realtime Explorer of Low Latency in Every Dimension) creates 3D images in real time from 3D FITS files and is written in Python for the 3D graphics suite Blender. Users can interactively generate masks around regions of arbitrary geometry and use them to catalog sources, hide regions, and perform basic analysis (*e.g.*, image statistics within the selected region, generate contour plots, query NED and the SDSS). World coordinates are supported and multi-volume rendering is possible. FRELLED is designed for viewing HI data cubes and provides a number of tasks to commonly-used MIRIAD (ascl:1106.007) tasks (e.g. mbspect); however, many of its features are suitable for any type of data set. It also includes an n-body particle viewer with the ability to display 3D vector information as well as the ability to render time series movies of multiple FITS files and setup simple turntable rotation movies for single files.

[ascl:1211.002]
FreeEOS: Equation of State for stellar interiors calculations

FreeEOS is a Fortran library for rapidly calculating the equation of state using an efficient free-energy minimization technique that is suitable for physical conditions in stellar interiors. Converged FreeEOS solutions can be reliably determined for the first time for physical conditions occurring in stellar models with masses between 0.1 M_{☉} and the hydrogen-burning limit near 0.07 M_{☉} and hot brown-dwarf models just below that limit. However, an initial survey of results for those conditions showed EOS discontinuities (plasma phase transitions) and other problems which will need to be addressed in future work by adjusting the interaction radii characterizing the pressure ionization used for the FreeEOS calculations.

[ascl:1610.014]
Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

[ascl:1906.003]
FREDDA: A fast, real-time engine for de-dispersing amplitudes

FREDDA detects Fast Radio Bursts (FRBs) in power data. It is optimized for use at ASKAP, namely GHz frequencies with 10s of beams, 100s of channels and millisecond integration times. The code is written in CUDA for NVIDIA Graphics Processing Units.

[ascl:1010.002]
fpack: FITS Image Compression Program

fpack is a utility program for optimally compressing images in the FITS data format. The associated funpack program will restore the compressed file back to its original state. These programs may be run from the host operating system command line and are analogous to the gzip and gunzip utility programs, except that they are specifically optimized for FITS format images and offer a wider choice of compression options.

fpack uses the tiled image compression convention for storing the compressed images. This convention can in principle support any number of of different compression algorithms; currently GZIP, Rice, Hcompress, and the IRAF pixel list compression algorithms have been implemented.

The main advantages of fpack compared to the commonly used technique of externally compressing the whole FITS file with gzip are:

- It is generally faster and offers better compression than gzip.
- The FITS header keywords remain uncompressed for fast access.
- Each HDU of a multi-extension FITS file is compressed separately, so it is not necessary to uncompress the entire file to read a single image in a multi-extension file.
- Dividing the image into tiles before compression enables faster access to small subsections of the image.
- The compressed image is itself a valid FITS file and can be manipulated by other general FITS utility software.
- Lossy compression can be used for much higher compression in cases where it is not necessary to exactly preserve the original image.
- The CHECKSUM keywords are automatically updated to help verify the integrity of the files.
- Software that supports the tiled image compression technique can directly read and write the FITS images in their compressed form.

[ascl:1806.030]
foxi: Forecast Observations and their eXpected Information

Using information theory and Bayesian inference, the foxi Python package computes a suite of expected utilities given futuristic observations in a flexible and user-friendly way. foxi requires a set of n-dim prior samples for each model and one set of n-dim samples from the current data, and can calculate the expected ln-Bayes factor between models, decisiveness between models and its maximum-likelihood averaged equivalent, the decisivity, and the expected Kullback-Leibler divergence (i.e., the expected information gain of the futuristic dataset). The package offers flexible inputs and is designed for all-in-one script calculation or an initial cluster run then local machine post-processing, which should make large jobs quite manageable subject to resources and includes features such as LaTeX tables and plot-making for post-data analysis visuals and convenience of presentation.

[ascl:1610.012]
Fourierdimredn: Fourier dimensionality reduction model for interferometric imaging

Fourierdimredn (Fourier dimensionality reduction) implements Fourier-based dimensionality reduction of interferometric data. Written in Matlab, it derives the theoretically optimal dimensionality reduction operator from a singular value decomposition perspective of the measurement operator. Fourierdimredn ensures a fast implementation of the full measurement operator and also preserves the i.i.d. Gaussian properties of the original measurement noise.

[ascl:1204.004]
Fosite: 2D advection problem solver

Fosite implements a method for the solution of hyperbolic conservation laws in curvilinear orthogonal coordinates. It is written in Fortran 90/95 integrating object-oriented (OO) design patterns, incorporating the flexibility of OO-programming into Fortran 90/95 while preserving the efficiency of the numerical computation. Although mainly intended for CFD simulations, Fosite's modular design allows its application to other advection problems as well. Unlike other two-dimensional implementations of finite volume methods, it accounts for local conservation of specific angular momentum. This feature turns the program into a perfect tool for astrophysical simulations where angular momentum transport is crucial. Angular momentum transport is not only implemented for standard coordinate systems with rotational symmetry (i.e. cylindrical, spherical) but also for a general set of orthogonal coordinate systems allowing the use of exotic curvilinear meshes (e.g. oblate-spheroidal). As in the case of the advection problem, this part of the software is also kept modular, therefore new geometries may be incorporated into the framework in a straightforward manner.

[ascl:1405.007]
FORWARD: Forward modeling of coronal observables

Gibson, Sarah E.; Kucera, Therese A.; Casini, Roberto; Dove, James; Forland, Blake; Judge, Philip; Rachmeler, Laurel

FORWARD forward models various coronal observables and can access and compare existing data. Given a coronal model, it can produce many different synthetic observables (including Stokes polarimetry), as well as plots of model plasma properties (density, magnetic field, etc.). It uses the CHIANTI database (ascl:9911.004) and CLE polarimetry synthesis code, works with numerical model datacubes, interfaces with the PFSS module of SolarSoft (ascl:1208.013), includes several analytic models, and connects to the Virtual Solar Observatory for downloading data in a format directly comparable to model predictions.

[ascl:1904.011]
FortesFit: Flexible spectral energy distribution modelling with a Bayesian backbone

FortesFit efficiently explores and discriminates between various spectral energy distributions (SED) models of astronomical sources. The Python package adds Bayesian inference to a framework that is designed for the easy incorporation and relative assessment of SED models, various fitting engines, and a powerful treatment of priors, especially those that may arise from non-traditional wave-bands such as the X-ray or radio emission, or from spectroscopic measurements. It has been designed with particular emphasis for its scalability to large datasets and surveys.

[ascl:1701.007]
Forecaster: Mass and radii of planets predictor

Forecaster predicts the mass (or radius) from the radius (or mass) for objects covering nine orders-of-magnitude in mass. It is an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. It accounts for observational errors, hyper-parameter uncertainties and the intrinsic dispersions observed in the calibration sample.

[ascl:1011.019]
FLY: MPI-2 High Resolution code for LSS Cosmological Simulations

Cosmological simulations of structures and galaxies formations have played a fundamental role in the study of the origin, formation and evolution of the Universe. These studies improved enormously with the use of supercomputers and parallel systems and, recently, grid based systems and Linux clusters. Now we present the new version of the tree N-body parallel code FLY that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and we show the performances obtained. FLY is included in the Computer Physics Communication Program Library. This new version was developed using the Linux Cluster of CINECA, an IBM Cluster with 1024 Intel Xeon Pentium IV 3.0 Ghz. The results show that it is possible to run a 64 Million particle simulation in less than 15 minutes for each timestep, and the code scalability with the number of processors is achieved. This lead us to propose FLY as a code to run very large N-Body simulations with more than $10^{9}$ particles with the higher resolution of a pure tree code.

[ascl:1405.010]
FLUXES: Position and flux density of planets

Jenness, Tim; Privett, Grant; Matthews, Henry; Hohenkerk, Catherine; Barnard, Vicki; Tilanus, Remo; Watt, Graeme; Emerson, Jim

FLUXES calculates approximate topocentric positions of the planets and also integrated flux densities of five of them at several wavelengths. These provide calibration information at the effective frequencies and beam-sizes employed by the UKT14, SCUBA and SCUBA-2 receivers on the JCMT telescope based on Mauna Kea, Hawaii. FLUXES is part of the bundle that comprises the Starlink multi-purpose astronomy software package (ascl:1110.012).

[ascl:1712.010]
Flux Tube: Solar model

Flux Tube is a nonlinear, two-dimensional, numerical simulation of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after horizontal and vertical oscillatory perturbations are applied to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized by a special boundary condition.

[ascl:1105.008]
Flux Tube Model

This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

[ascl:1210.007]
FLUKA: Fully integrated particle physics Monte Carlo simulation package

Fassò, Alberto; Ferrari, Alfredo; Ranft, Johannes; Sala, Paola; Mairani, Andrea; Empl, Anton; Sommerer, Florian; Cerutti, Francesco; Battistoni, Giuseppe; Roesler, Stefan; Vlachoudis, Vasilis; Patera, Vincenzo; Aarnio, P.; Möhring, J.-H.; Stevenson, G. R.; Zazula, J. M.

FLUKA (FLUktuierende KAskade) is a general-purpose tool for calculations of particle transport and interactions with matter. FLUKA can simulate with high accuracy the interaction and propagation in matter of about 60 different particles, including photons and electrons from 1 keV to thousands of TeV, neutrinos, muons of any energy, hadrons of energies up to 20 TeV (up to 10 PeV by linking FLUKA with the DPMJET code) and all the corresponding antiparticles, neutrons down to thermal energies and heavy ions. The program, written in Fortran, can also transport polarised photons (e.g., synchrotron radiation) and optical photons. Time evolution and tracking of emitted radiation from unstable residual nuclei can be performed online.

[ascl:1411.016]
Flicker: Mean stellar densities from flicker

Flicker calculates the mean stellar density of a star by inputting the flicker observed in a photometric time series. Written in Fortran90, its output may be used as an informative prior on stellar density when fitting transit light curves.

[ascl:1205.006]
Flexion: IDL code for calculating gravitational flexion

Gravitational flexion is a technique for measuring 2nd order gravitational lensing signals in background galaxies and radio lobes. Unlike shear, flexion directly probes variations of the potential field. Moreover, the information contained in flexion is orthogonal to what is found in the shear. Thus, we get the information "for free."

[ascl:1107.004]
Flexible DM-NRG

This code combines the spectral sum-conserving methods of Weichselbaum and von Delft and of Peters, Pruschke and Anders (both relying upon the complete basis set construction of Anders and Schiller) with the use of non-Abelian symmetries in a flexible manner: Essentially any non-Abelian symmetry can be taught to the code, and any number of such symmetries can be used throughout the computation for any density of states, and to compute any local operators' correlation function's real and imaginary parts or any thermodynamical expectation value. The code works both at zero and finite temperatures.

[ascl:1612.006]
flexCE: Flexible one-zone chemical evolution code

flexCE (flexible Chemical Evolution) computes the evolution of a one-zone chemical evolution model with inflow and outflow in which gas is instantaneously and completely mixed. It can be used to demonstrate the sensitivity of chemical evolution models to parameter variations, show the effect of CCSN yields on chemical evolution models, and reproduce the 2D distribution in [O/Fe]{[Fe/H] by mixing models with a range of inflow and outflow histories. It can also post-process cosmological simulations to predict element distributions.

[ascl:1606.015]
FLASK: Full-sky Lognormal Astro-fields Simulation Kit

FLASK (Full-sky Lognormal Astro-fields Simulation Kit) makes tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields; it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges. It is C++ code parallelized with OpenMP; FLASK generates fast full-sky simulations of cosmological large-scale structure observables such as multiple matter density tracers (galaxies, quasars, dark matter haloes), CMB temperature anisotropies and weak lensing convergence and shear fields. The mutiple fields can be generated tomographically in an arbitrary number of redshift slices and all their statistical properties (including cross-correlations) are determined by the angular power spectra supplied as input and the multivariate lognormal (or Gaussian) distribution assumed for the fields. Effects like redshift space distortions, doppler distortions, magnification biases, evolution and intrinsic aligments can be introduced in the simulations via the input power spectra which must be supplied by the user.

[ascl:1010.082]
FLASH: Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes

Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H.

The FLASH code, currently in its 4th version, is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other. A simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework combined with regression tests that run nightly on multiple platforms verify the code.

[ascl:1811.007]
Flame: Near-infrared and optical spectroscopy data reduction pipeline

Flame reduces near-infrared and optical multi-object spectroscopic data. Although the pipeline was created for the LUCI instrument at the Large Binocular Telescope, Flame, written in IDL, is modular and can be adapted to work with data from other instruments. The software uses 2D transformations, thus using one interpolation step to wavelength calibrate and rectify the data. The γ(x, y) transformation also includes the spatial misalignment between frames, which can be measured from a reference star observed simultaneously with the science targets; sky subtraction can be performed via nodding and/or modelling of the sky spectrum.

[ascl:1112.007]
FLAGCAL: FLAGging and CALlibration Pipeline for GMRT Data

FLAGging and CALlibration (FLAGCAL) is a software pipeline developed for automatic flagging and calibration of the GMRT data. This pipeline can be used for preprocessing (before importing the data in AIPS) any other interferromteric data also (given that the data file is in FITS format and contains multiple channels & scans).There are also a few GUI based tools which can be used for quick visualization of the data.

[ascl:1710.007]
FLAG: Exact Fourier-Laguerre transform on the ball

FLAG is a fast implementation of the Fourier-Laguerre Transform, a novel 3D transform exploiting an exact quadrature rule of the ball to construct an exact harmonic transform in 3D spherical coordinates. The angular part of the Fourier-Laguerre transform uses the MW sampling theorem and the exact spherical harmonic transform implemented in the SSHT code. The radial sampling scheme arises from an exact quadrature of the radial half-line using damped Laguerre polynomials. The radial transform can in fact be used to compute the spherical Bessel transform exactly, and the Fourier-Laguerre transform is thus closely related to the Fourier-Bessel transform.

[ascl:1709.011]
FLaapLUC: Fermi-LAT automatic aperture photometry light curve

Most high energy sources detected with Fermi-LAT are blazars, which are highly variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shed light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. FLaapLUC (Fermi-LAT automatic aperture photometry Light C↔Urve) uses the simple aperture photometry approach to effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger observations of these sources with other facilities. The FLaapLUC pipeline is built on top of the Science Tools provided by the Fermi-LAT collaboration and quickly generates short- or long-term Fermi-LAT light curves.

[ascl:1905.012]
Fitsverify: FITS file format-verification tool

Fitsverify rigorously checks whether a FITS (Flexible Image Transport System) data file conforms to the requirements defined in Version 3.0 of the FITS Standard document; it is a standalone version of the ftverify and fverify tasks that are distributed as part of the ftools (ascl:9912.002) software package. The source code must be compiled and linked with the CFITSIO (ascl:1010.001) library. An interactive web is also available that can verify the format of any FITS data file on a local computer or on the Web.

[ascl:1107.003]
FITSManager: Management of Personal Astronomical Data

Cui, Chenzhou; Fan, Dongwei; Zhao, Yongheng; Kembhavi, Ajit; He, Boliang; Cao, Zihuang; Li, Jian; Nandrekar, Deoyani

With the increase of personal storage capacity, it is easy to find hundreds to thousands of FITS files in the personal computer of an astrophysicist. Because Flexible Image Transport System (FITS) is a professional data format initiated by astronomers and used mainly in the small community, data management toolkits for FITS files are very few. Astronomers need a powerful tool to help them manage their local astronomical data. Although Virtual Observatory (VO) is a network oriented astronomical research environment, its applications and related technologies provide useful solutions to enhance the management and utilization of astronomical data hosted in an astronomer's personal computer. FITSManager is such a tool to provide astronomers an efficient management and utilization of their local data, bringing VO to astronomers in a seamless and transparent way. FITSManager provides fruitful functions for FITS file management, like thumbnail, preview, type dependent icons, header keyword indexing and search, collaborated working with other tools and online services, and so on. The development of the FITSManager is an effort to fill the gap between management and analysis of astronomical data.

[ascl:1111.014]
FITSH: Software Package for Image Processing

FITSH provides a standalone environment for analysis of data acquired by imaging astronomical detectors. The package provides utilities both for the full pipeline of subsequent related data processing steps (including image calibration, astrometry, source identification, photometry, differential analysis, low-level arithmetic operations, multiple image combinations, spatial transformations and interpolations, etc.) and for aiding the interpretation of the (mainly photometric and/or astrometric) results. The package also features a consistent implementation of photometry based on image subtraction, point spread function fitting and aperture photometry and provides easy-to-use interfaces for comparisons and for picking the most suitable method for a particular problem. The utilities in the package are built on the top of the commonly used UNIX/POSIX shells (hence the name of the package), therefore both frequently used and well-documented tools for such environments can be exploited and managing massive amount of data is rather convenient.

[ascl:1710.018]
FITSFH: Star Formation Histories

FITSFH derives star formation histories from photometry of resolved stellar populations by populating theoretical isochrones according to a chosen stellar initial mass function (IMF) and searching for the linear combination of isochrones with different ages and metallicities that best matches the data. In comparing the synthetic and real data, observational errors and incompleteness are taken into account, and a rudimentary treatment of the effect of unresolved binaries is also implemented. The code also allows for an age-dependent range of extinction values to be included in the modelling.

[ascl:1505.029]
fits2hdf: FITS to HDFITS conversion

fits2hdf ports FITS files to Hierarchical Data Format (HDF5) files in the HDFITS format. HDFITS allows faster reading of data, higher compression ratios, and higher throughput. HDFITS formatted data can be presented transparently as an in-memory FITS equivalent by changing the import lines in Python-based FITS utilities. fits2hdf includes a utility to port MeasurementSets (MS) to HDF5 files.

[ascl:1206.002]
FITS Liberator: Image processing software

Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO’s Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA’s Spitzer Space Telescope, ESA’s XMM–Newton Telescope and Cassini–Huygens or Mars Reconnaissance Orbiter.

[ascl:1305.011]
FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra. FITDisk is the Windows executable form of this software; its Fortran source code is also available as DiskSim (ascl:1811.013).

[ascl:1609.015]
FIT3D: Fitting optical spectra

Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

[ascl:1601.016]
Fit Kinematic PA: Fit the global kinematic position-angle of galaxies

Fit kinematic PA measures the global kinematic position-angle (PA) from integral field observations of a galaxy stellar or gas kinematics; the code is available in IDL and Python.

[ascl:1609.005]
FISHPACK90: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

FISHPACK90 is a modernization of the original FISHPACK (ascl:1609.004), employing Fortran90 to slightly simplify and standardize the interface to some of the routines. This collection of Fortran programs and subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates. Test programs are provided for the 19 solvers. Each serves two purposes: as a template to guide you in writing your own codes utilizing the FISHPACK90 solvers, and as a demonstration on your computer that you can correctly produce FISHPACK90 executables.

[ascl:1609.004]
FISHPACK: Efficient FORTRAN Subprograms for the Solution of Separable Elliptic Partial Differential Equations

The FISHPACK collection of Fortran77 subroutines solves second- and fourth-order finite difference approximations to separable elliptic Partial Differential Equations (PDEs). These include Helmholtz equations in cartesian, polar, cylindrical, and spherical coordinates, as well as more general separable elliptic equations. The solvers use the cyclic reduction algorithm. When the problem is singular, a least-squares solution is computed. Singularities induced by the coordinate system are handled, including at the origin r=0 in cylindrical coordinates, and at the poles in spherical coordinates.

[ascl:1201.007]
Fisher4Cast: Fisher Matrix Toolbox

The Fisher4Cast suite, which requires MatLab, provides a standard, tested tool set for general Fisher Information matrix prediction and forecasting for use in both research and education. The toolbox design is robust and modular, allowing for easy additions and adaptation while keeping the user interface intuitive and easy to use. Fisher4Cast is completely general but the default is coded for cosmology. It provides parameter error forecasts for cosmological surveys providing distance, Hubble expansion and growth measurements in a general, curved FLRW background.

[ascl:1010.070]
Fisher.py: Fisher Matrix Manipulation and Confidence Contour Plotting

Fisher.py allows you to combine constraints from multiple experiments (e.g., weak lensing + supernovae) and add priors (e.g., a flat universe) simply and easily. Calculate parameter uncertainties and plot confidence ellipses. Fisher matrix expectations for several experiments are included as calculated by myself (time delays) and the Dark Energy Task Force (WL/SN/BAO/CL/CMB), or provide your own.

[ascl:1202.014]
FISA: Fast Integrated Spectra Analyzer

FISA (Fast Integrated Spectra Analyzer) permits fast and reasonably accurate age and reddening determinations for small angular diameter open clusters by using their integrated spectra in the (3600-7400) AA range and currently available template spectrum libraries. This algorithm and its implementation help to achieve astrophysical results in shorter times than from other methods. FISA has successfully been applied to integrated spectroscopy of open clusters, both in the Galaxy and in the Magellanic Clouds, to determine ages and reddenings.

[ascl:1810.021]
Firefly: Interactive exploration of particle-based data

Firefly provides interactive exploration of particle-based data in the browser. The user can filter, display vector fields, and toggle the visibility of their customizable datasets all on-the-fly. Different Firefly visualizations, complete with preconfigured data and camera view-settings, can be shared by URL. As Firefly is written in WebGL, it can be hosted online, though Firefly can also be used locally, without an internet connection. Firefly was developed with simulations of galaxy formation in mind but is flexible enough to display any particle-based data. Other features include a stereoscopic 3D picture mode and mobile compatibility.

[ascl:1808.006]
Fips: An OpenGL based FITS viewer

FIPS is a cross-platform FITS viewer with a responsive user interface. Unlike other FITS viewers, FIPS uses GPU hardware via OpenGL to provide functionality such as zooming, panning and level adjustments. OpenGL 2.1 and later is supported. FIPS supports all 2D image formats except floating point formats on OpenGL 2.1. FITS image extension has basic limited support.

[ascl:1602.007]
FilTER: Filament Trait-Evaluated Reconstruction

FilTER (Filament Trait-Evaluated Reconstruction) post-processes output from DisPerSE (ascl:1302.015

[ascl:1608.009]
FilFinder: Filamentary structure in molecular clouds

FilFinder extracts and analyzes filamentary structure in molecular clouds. In particular, it is capable of uniformly extracting structure over a large dynamical range in intensity. It returns the main filament properties: local amplitude and background, width, length, orientation and curvature. FilFinder offers additional tools to, for example, create a filament-only image based on the properties of the radial fits. The resulting mask and skeletons may be saved in FITS format, and property tables may be saved as a CSV, FITS or LaTeX table.

[ascl:1203.013]
Figaro: Data Reduction Software

Figaro is a data reduction system that originated at Caltech and whose development continued at the Anglo-Australian Observatory. Although it is intended to be able to deal with any sort of data, almost all its applications to date are geared towards processing optical and infrared data. Figaro uses hierarchical data structures to provide flexibility in its data file formats. Figaro was originally written to run under DEC's VMS operating system, but is now available both for VMS and for various flavours of UNIX.

[ascl:1708.009]
FIEStool: Automated data reduction for FIber-fed Echelle Spectrograph (FIES)

FIEStool automatically reduces data obtained with the FIber-fed Echelle Spectrograph (FIES) at the Nordic Optical Telescope, a high-resolution spectrograph available on a stand-by basis, while also allowing the basic properties of the reduction to be controlled in real time by the user. It provides a Graphical User Interface and offers bias subtraction, flat-fielding, scattered-light subtraction, and specialized reduction tasks from the external packages IRAF (ascl:9911.002) and NumArray. The core of FIEStool is instrument-independent; the software, written in Python, could with minor modifications also be used for automatic reduction of data from other instruments.

[ascl:1307.004]
FieldInf: Field Inflation exact integration routines

FieldInf is a collection of fast modern Fortran routines for computing exactly the background evolution and primordial power spectra of any single field inflationary models. It implements reheating without any assumptions through the "reheating parameter" R allowing robust inflationary parameter estimations and inference on the reheating energy scale. The underlying perturbation code actually deals with N fields minimally-coupled and/or non-minimally coupled to gravity and works for flat FLRW only.

[ascl:1111.013]
FIBRE-pac: FMOS Image-based Reduction Package

Iwamuro, F.; Moritani, Y.; Yabe, K.; Sumiyoshi, M.; Kawate, K.; Tamura, N.; Akiyama, M.; Kimura, M.; Takato, N.; Tait, P.; Ohta, K.; Totani, T.; Suzuki, Y.; Tonegawa, M.

The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.

[ascl:1603.014]
fibmeasure: Python/Cython module to find the center of back-illuminated optical fibers in metrology images

fibmeasure finds the precise locations of the centers of back-illuminated optical fibers in images. It was developed for astronomical fiber positioning feedback via machine vision cameras and is optimized for high-magnification images where fibers appear as resolvable circles. It was originally written during the design of the WEAVE pick-and-place fiber positioner for the William Herschel Telescope.

[ascl:1201.015]
FFTW: Fastest Fourier Transform in the West

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST).

Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification.

The FFTW library is required by other codes such as StarCrash and Hammurabi.

[ascl:1512.017]
FFTLog: Fast Fourier or Hankel transform

FFTLog is a set of Fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFTLog can be regarded as a natural analogue to the standard Fast Fourier Transform (FFT), in the sense that, just as the normal FFT gives the exact (to machine precision) Fourier transform of a linearly spaced periodic sequence, so also FFTLog gives the exact Fourier or Hankel transform, of arbitrary order m, of a logarithmically spaced periodic sequence.

[ascl:1208.011]
Fewbody: Numerical toolkit for simulating small-N gravitational dynamics

Fewbody is a numerical toolkit for simulating small-N gravitational dynamics. It is a general N-body dynamics code, although it was written for the purpose of performing scattering experiments, and therefore has several features that make it well-suited for this purpose. Fewbody uses the 8th-order Runge-Kutta Prince-Dormand integration method with 9th-order error estimate and adaptive timestep to advance the N-body system forward in time. It integrates the usual formulation of the N-body equations in configuration space, but allows for the option of global pairwise Kustaanheimo-Stiefel (K-S) regularization (Heggie 1974; Mikkola 1985). The code uses a binary tree algorithm to classify the N-body system into a set of independently bound hierarchies, and performs collisions between stars in the “sticky star” approximation. Fewbody contains a collection of command line utilities that can be used to perform individual scattering and N-body interactions, but is more generally a library of functions that can be used from within other codes.

[ascl:1905.011]
Fermitools: Fermi Science Tools

Fermi Science Tools is a suite of tools for the analysis of both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) data, including point source analysis for generating maps, spectra, and light curves, pulsar timing analysis, and source identification.

[ascl:1812.006]
Fermipy: Fermi-LAT data analysis package

Wood, M.; Caputo, R.; Charles, E.; Di Mauro, M.; Magill, J.; Perkins, J. S.; Fermi-LAT Collaboration

Fermipy facilitates analysis of data from the Large Area Telescope (LAT) with the Fermi Science Tools. It is built on the pyLikelihood interface of the Fermi Science Tools and provides a set of high-level tools for performing common analysis tasks, including data and model preparation with the gt-tools, extracting a spectral energy distribution (SED) of a source, and generating TS and residual maps for a region of interest. Fermipy also finds new source candidates and can localize a source or fit its spatial extension. The package uses a configuration-file driven workflow in which the analysis parameters (data selection, IRFs, and ROI model) are defined in a YAML configuration file. Analysis is executed through a python script that calls the methods of GTAnalysis to perform different analysis operations.

[ascl:1203.004]
FERENGI: Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images

Bandpass shifting and the (1+z)5 surface brightness dimming (for a fixed width filter) make standard tools for the extraction of structural parameters of galaxies wavelength dependent. If only few (or one) observed high-res bands exist, this dependence has to be corrected to make unbiased statements on the evolution of structural parameters or on galaxy subsamples defined by morphology. FERENGI artificially redshifts low-redshift galaxy images to different redshifts by applying the correct cosmological corrections for size, surface brightness and bandpass shifting. A set of artificially redshifted galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low-redshift (v<7000 km s-1) images as input has been created to use as a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions, and other galaxy properties that are potentially sensitive to resolution, surface brightness, and bandpass issues. The data sets are also available for download from the FERENGI website.

[ascl:1806.001]
feets: feATURE eXTRACTOR FOR tIME sERIES

feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

[ascl:1604.011]
FDPS: Framework for Developing Particle Simulators

Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

FDPS provides the necessary functions for efficient parallel execution of particle-based simulations as templates independent of the data structure of particles and the functional form of the interaction. It is used to develop particle-based simulation programs for large-scale distributed-memory parallel supercomputers. FDPS includes templates for domain decomposition, redistribution of particles, and gathering of particle information for interaction calculation. It uses algorithms such as Barnes-Hut tree method for long-range interactions; methods to limit the calculation to neighbor particles are used for short-range interactions. FDPS reduces the time and effort necessary to write a simple, sequential and unoptimized program of O(N^2) calculation cost, and produces compiled programs that will run efficiently on large-scale parallel supercomputers.

[ascl:1606.011]
FDIPS: Finite Difference Iterative Potential-field Solver

FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.

[ascl:1705.011]
FDBinary: A tool for spectral disentangling of double-lined spectroscopic binary stars

FDBinary disentangles spectra of SB2 stars. The spectral disentangling technique can be applied on a time series of observed spectra of an SB2 to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. The code is written in C and is designed as a command-line utility for a Unix-like operating system. FDBinary uses the Fourier-space approach in separation of composite spectra. This code has been replaced with the newer fd3 (ascl:1705.012).

[ascl:1705.012]
fd3: Spectral disentangling of double-lined spectroscopic binary stars

The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

[ascl:1806.027]
fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2

fcmaker creates astronomical finding charts for Observing Blocks (OBs) on the p2 web server from the European Southern Observatory (ESO). It automates the creation of ESO-compliant finding charts for Service Mode and/or Visitor Mode OBs at the Very Large Telescope (VLT). The design of the fcmaker finding charts, based on an intimate knowledge of VLT observing procedures, is fine-tuned to best support night time operations. As an automated tool, fcmaker also allows observers to independently check visually, for the first time, the observing sequence coded inside an OB. This includes, for example, the signs of telescope and position angle offsets.

[ascl:1505.014]
FCLC: Featureless Classification of Light Curves

FCLC (Featureless Classification of Light Curves) software describes the static behavior of a light curve in a probabilistic way. Individual data points are converted to densities and consequently probability density are compared instead of features. This gives rise to an independent classification which can corroborate the usefulness of the selected features.

[ascl:1712.011]
FBEYE: Analyzing Kepler light curves and validating flares

FBEYE, the "Flares By-Eye" detection suite, is written in IDL and analyzes Kepler light curves and validates flares. It works on any 3-column light curve that contains time, flux, and error. The success of flare identification is highly dependent on the smoothing routine, which may not be suitable for all sources.

[ascl:1711.017]
FATS: Feature Analysis for Time Series

Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Zhu, Ming; Dave, Rahul; Castro, Nicolas; Pichara, Karim

FATS facilitates and standardizes feature extraction for time series data; it quickly and efficiently calculates a compilation of many existing light curve features. Users can characterize or analyze an astronomical photometric database, though this library is not necessarily restricted to the astronomical domain and can also be applied to any kind of time series data.

[ascl:1507.011]
FAT: Fully Automated TiRiFiC

Kamphuis, P.; Józsa, G. I. G.; Oh, S-. H.; Spekkens, K.; Urbancic, N.; Serra, P.; Koribalski, B. S.; Dettmar, R.-J.

FAT (Fully Automated TiRiFiC) is an automated procedure that fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC, ascl:1208.008). FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20°-90° without the need for priors such as disc inclination. FAT's performance allows us to model the gas kinematics of many thousands of well-resolved galaxies, which is essential for future HI surveys, with the Square Kilometre Array and its pathfinders.

[ascl:1905.010]
FastPM: Scaling N-body Particle Mesh solver

FastPM solves the gravity Possion equation with a boosted particle mesh. Arbitrary time steps can be used. The code is intended to study the formation of large scale structure and supports plain PM and Comoving-Lagranian (COLA) solvers. A broadband correction enforces the linear theory model growth factor at large scale. FastPM scales extremely well to hundred thousand MPI ranks, which is possible through the use of the PFFT Fourier Transform library. The size of mesh in FastPM can vary with time, allowing one to use coarse force mesh at high redshift with increase temporal resolution for accurate large scale modes. The code supports a variety of Greens function and differentiation kernels, though for most practical simulations the choice of kernels does not make a difference. A parameter file interpreter is provided to validate and execute the configuration files without running the simulation, allowing creative usages of the configuration files.

[ascl:1302.008]
FASTPHOT: A simple and quick IDL PSF-fitting routine

PSF fitting photometry allows a simultaneously fit of a PSF profile on the sources. Many routines use PSF fitting photometry, including IRAF/allstar, Strarfinder, and Convphot. These routines are in general complex to use and slow. FASTPHOT is optimized for prior extraction (the position of the sources is known) and is very fast and simple.

[ascl:1010.041]
FASTLens (FAst STatistics for weak Lensing): Fast Method for Weak Lensing Statistics and Map Making

The analysis of weak lensing data requires to account for missing data such as masking out of bright stars. To date, the majority of lensing analyses uses the two point-statistics of the cosmic shear field. These can either be studied directly using the two-point correlation function, or in Fourier space, using the power spectrum. The two-point correlation function is unbiased by missing data but its direct calculation will soon become a burden with the exponential growth of astronomical data sets. The power spectrum is fast to estimate but a mask correction should be estimated. Other statistics can be used but these are strongly sensitive to missing data. The solution that is proposed by FASTLens is to properly fill-in the gaps with only NlogN operations, leading to a complete weak lensing mass map from which one can compute straight forwardly and with a very good accuracy any kind of statistics like power spectrum or bispectrum.

[ascl:9910.003]
FASTELL: Fast calculation of a family of elliptical mass gravitational lens models

Because of their simplicity, axisymmetric mass distributions are often used to model gravitational lenses. Since galaxies are usually observed to have elliptical light distributions, mass distributions with elliptical density contours offer more general and realistic lens models. They are difficult to use, however, since previous studies have shown that the deflection angle (and magnification) in this case can only be obtained by rather expensive numerical integrations. We present a family of lens models for which the deflection can be calculated to high relative accuracy (10-5) with a greatly reduced numerical effort, for small and large ellipticity alike. This makes it easier to use these distributions for modeling individual lenses as well as for applications requiring larger computing times, such as statistical lensing studies. FASTELL is a code to calculate quickly and accurately the lensing deflection and magnification matrix for the softened power-law elliptical mass distribution (SPEMD) lens galaxy model. The SPEMD consists of a softened power-law radial distribution with elliptical isodensity contours.

[ascl:1010.037]
FastChi: A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

The Fast Chi-Squared Algorithm is a fast, powerful technique for detecting periodicity. It was developed for analyzing variable stars, but is applicable to many of the other applications where the Fast Fourier Transforms (FFTs) or other periodograms (such as Lomb-Scargle) are currently used. The Fast Chi-squared technique takes a data set (e.g. the brightness of a star measured at many different times during a series of observations) and finds the periodic function that has the best frequency and shape (to an arbitrary number of harmonics) to fit the data. Among its advantages are:

- Statistical efficiency: all of the data are used, weighted by their individual error bars, giving a result with a significance calibrated in well-understood Chi-squared statistics.
- Sensitivity to harmonic content: many conventional techniques look only at the significance (or the amplitude) of the fundamental sinusoid and discard the power of the higher harmonics.
- Insensitivity to the sample timing: you won't find a period of 24 hours just because you take your observations at night. You do not need to window your data.
- The frequency search is gridded more tightly than the traditional "integer number of cycles over the span of observations", eliminating power loss from peaks that fall between the grid points.
- Computational speed: The complexity of the algorithm is O(NlogN), where N is the number of frequencies searched, due to its use of the FFT.

[ascl:1804.025]
FastChem: An ultra-fast equilibrium chemistry

FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

[ascl:1803.008]
FAST: Fitting and Assessment of Synthetic Templates

Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis

FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.

[ascl:1603.006]
FAST-PT: Convolution integrals in cosmological perturbation theory calculator

FAST-PT calculates 1-loop corrections to the matter power spectrum in cosmology. The code utilizes Fourier methods combined with analytic expressions to reduce the computation time down to scale as N log N, where N is the number of grid point in the input linear power spectrum. FAST-PT is extremely fast, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation.

[ascl:1010.010]
Fast WMAP Likelihood Code and GSR PC Functions

We place functional constraints on the shape of the inflaton potential from the cosmic microwave background through a variant of the generalized slow roll approximation that allows large amplitude, rapidly changing deviations from scale-free conditions. Employing a principal component decomposition of the source function G'~3(V'/V)^2 - 2V''/V and keeping only those measured to better than 10% results in 5 nearly independent Gaussian constraints that maybe used to test any single-field inflationary model where such deviations are expected. The first component implies < 3% variations at the 100 Mpc scale. One component shows a 95% CL preference for deviations around the 300 Mpc scale at the ~10% level but the global significance is reduced considering the 5 components examined. This deviation also requires a change in the cold dark matter density which in a flat LCDM model is disfavored by current supernova and Hubble constant data and can be tested with future polarization or high multipole temperature data. Its impact resembles a local running of the tilt from multipoles 30-800 but is only marginally consistent with a constant running beyond this range. For this analysis, we have implemented a ~40x faster WMAP7 likelihood method which we have made publicly available.

[submitted]
Fast Template Periodogram

The Fast Template Periodogram extends the Generalised Lomb Scargle periodogram (Zechmeister and Kurster 2009) for arbitrary (periodic) signal shapes. A template is first approximated by a truncated Fourier series of length H. The Nonequispaced Fast Fourier Transform NFFT is used to efficiently compute frequency-dependent sums. Template fitting can now be done in NlogN time, improving existing algorithms by an order of magnitude for even small datasets. The FTP can be used in conjunction with gradient descent to accelerate a non-linear model fit, or be used in place of the multi-harmonic periodogram for non-sinusoidal signals with a priori known shapes.

[ascl:1509.006]
FARGO3D: Hydrodynamics/magnetohydrodynamics code

A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.

[ascl:1102.017]
FARGO: Fast Advection in Rotating Gaseous Objects

FARGO is an efficient and simple modification of the standard transport algorithm used in explicit eulerian fixed polar grid codes, aimed at getting rid of the average azimuthal velocity when applying the Courant condition. This results in a much larger timestep than the usual procedure, and it is particularly well-suited to the description of a Keplerian disk where one is traditionally limited by the very demanding Courant condition on the fast orbital motion at the inner boundary. In this modified algorithm, the timestep is limited by the perturbed velocity and by the shear arising from the differential rotation. The speed-up resulting from the use of the FARGO algorithm is problem dependent. In the example presented in the code paper below, which shows the evolution of a Jupiter sized protoplanet embedded in a minimum mass protoplanetary nebula, the FARGO algorithm is about an order of magnitude faster than a traditional transport scheme, with a much smaller numerical diffusivity.

[ascl:1209.014]
FAMIAS: Frequency Analysis and Mode Identification for AsteroSeismology

FAMIAS (Frequency Analysis and Mode Identification for Asteroseismology) is a package of software tools programmed in C++ for the analysis of photometric and spectroscopic time-series data. FAMIAS provides analysis tools that are required for the steps between the data reduction and the seismic modeling. Two main sets of tools are incorporated in FAMIAS. The first set permits to search for periodicities in the data using Fourier and non-linear least-squares fitting techniques. The other set permits to carry out a mode identification for the detected pulsation frequencies to determine their harmonic degree l, and azimuthal order m. FAMIAS is applicable to main-sequence pulsators hotter than the Sun. This includes Gamma Dor, Delta Sct stars, slowly pulsating B (SPB)-stars and Beta Cep stars - basically all stars for which empirical mode identification is required to successfully carry out asteroseismology.

[ascl:1402.016]
FAMA: Fast Automatic MOOG Analysis

Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella

FAMA (Fast Automatic MOOG Analysis), written in Perl, computes the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) automatically and independently of any subjective approach. Based on the widely-used MOOG code, it simultaneously searches for three equilibria, excitation equilibrium, ionization balance, and the relationship between logn(FeI) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. Convergence criteria are not fixed "a priori" but instead are based on the quality of the spectra.

[ascl:1509.004]
FalconIC: Initial conditions generator for cosmological N-body simulations in Newtonian, Relativistic and Modified theories

FalconIC generates discrete particle positions, velocities, masses and pressures based on linear Boltzmann solutions that are computed by libraries such as CLASS and CAMB. FalconIC generates these initial conditions for any species included in the selection, including Baryons, Cold Dark Matter and Dark Energy fluids. Any species can be set in Eulerian (on a fixed grid) or Lagrangian (particle motion) representation, depending on the gauge and reality chosen. That is, for relativistic initial conditions in the synchronous comoving gauge, Dark Matter can only be described in an Eulerian representation. For all other choices (Relativistic in Longitudinal gauge, Newtonian with relativistic expansion rates, Newtonian without any notion of radiation), all species can be treated in all representations. The code also computes spectra. FalconIC is useful for comparative studies on initial conditions.

[ascl:1802.001]
FAC: Flexible Atomic Code

FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

[ascl:1705.006]
f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:1208.021]
EzGal: A Flexible Interface for Stellar Population Synthesis Models

EzGal is a flexible Python program which generates observable parameters (magnitudes, colors, and mass-to-light ratios) for arbitrary input stellar population synthesis (SPS) models; it enables simple, direct comparison of different model sets so that the uncertainty introduced by choice of model set can be quantified. EzGal is also capable of generating composite stellar population models (CSPs) for arbitrary input star-formation histories and reddening laws, and can be used to interpolate between metallicities for a given model set.

[ascl:1210.004]
EZ: A Tool For Automatic Redshift Measurement

EZ (Easy-Z) estimates redshifts for extragalactic objects. It compares the observed spectrum with a set of (user given) spectral templates to find out the best value for the redshift. To accomplish this task, it uses a highly configurable set of algorithms. EZ is easily extendible with new algorithms. It is implemented as a set of C programs and a number of python classes. It can be used as a standalone program, or the python classes can be directly imported by other applications.

[ascl:1407.019]
EZ_Ages: Stellar population age calculator

EZ_Ages is an IDL code package that computes the mean, light-weighted stellar population age, [Fe/H], and abundance enhancements [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for unresolved stellar populations. This is accomplished by comparing Lick index line strengths between the data and the stellar population models of Schiavon (2007), using a method described in Graves & Schiavon (2008). The algorithm uses the inversion of index-index model grids to determine ages and abundances, and exploits the sensitivities of the various Lick indices to measure Mg, C, N, and Ca enhancements over their solar abundances with respect to Fe.

[ascl:1010.061]
EyE: Enhance Your Extraction

In EyE (Enhance Your Extraction) an artificial neural network connected to pixels of a moving window (retina) is trained to associate these input stimuli to the corresponding response in one or several output image(s). The resulting filter can be loaded in SExtractor to operate complex, wildly non-linear filters on astronomical images. Typical applications of EyE include adaptive filtering, feature detection and cosmetic corrections.

[ascl:1010.032]
Extreme Deconvolution: Density Estimation using Gaussian Mixtures in the Presence of Noisy, Heterogeneous and Incomplete Data

Extreme-deconvolution is a general algorithm to infer a d-dimensional distribution function from a set of heterogeneous, noisy observations or samples. It is fast, flexible, and treats the data's individual uncertainties properly, to get the best description possible for the underlying distribution. It performs well over the full range of density estimation, from small data sets with only tens of samples per dimension, to large data sets with hundreds of thousands of data points.

[ascl:1803.011]
ExtLaw_H18: Extinction law code

Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

ExtLaw_H18 generates the extinction law between 0.8 - 2.2 microns. The law is derived using the Westerlund 1 (Wd1) main sequence (A_Ks ~ 0.6 mag) and Arches cluster field Red Clump at the Galactic Center (A_Ks ~ 2.7 mag). To derive the law a Wd1 cluster age of 5 Myr is assumed, though changing the cluster age between 4 Myr -- 7 Myr has no effect on the law. This extinction law can be applied to highly reddened stellar populations that have similar foreground material as Wd1 and the Arches RC, namely dust from the spiral arms of the Milky Way in the Galactic Plane.

[ascl:1708.025]
extinction-distances: Estimating distances to dark clouds

Extinction-distances uses the number of foreground stars and a Galactic model of the stellar distribution to estimate the distance to dark clouds. It exploits the relatively narrow range of intrinsic near-infrared colors of stars to separate foreground from background stars. An advantage of this method is that the distribution of stellar colors in the Galactic model need not be precisely correct, only the number density as a function of distance from the Sun.

[ascl:9906.002]
EXTINCT: A computerized model of large-scale visual interstellar extinction

The program EXTINCT.FOR is a FORTRAN subroutine summarizing a three-dimensional visual Galactic extinction model, based on a number of published studies. INPUTS: Galactic latitude (degrees), Galactic longitude (degrees), and source distance (kpc). OUTPUTS (magnitudes): Extinction, extinction error, a statistical correction term, and an array containing extinction and extinction error from each subroutine. The model is useful for correcting visual magnitudes of Galactic sources (particularly in statistical models), and has been used to find Galactic extinction of extragalactic sources. The model's limited angular resolution (subroutine-dependent, but with a minimum resolution of roughly 2 degrees) is necessitated by its ability to describe three-dimensional structure.

[ascl:1212.013]
EXSdetect: Extended X-ray Source Detection

Liu, Teng; Tozzi, Paolo; Tundo, Elena; Moretti, A.; Wang, Jun-Xian; Rosati, Piero; Guglielmetti, Fabrizia

EXSdetect is a python implementation of an X-ray source detection algorithm which is optimally designed to detected faint extended sources and makes use of Voronoi tessellation and Friend-of-Friend technique. It is a flexible tool capable of detecting extended sources down to the lowest flux levels attainable within instrumental limitations while maintaining robust photometry, high completeness, and low contamination, regardless of source morphology. EXSdetect was developed mainly to exploit the ever-increasing wealth of archival X-ray data, but is also ideally suited to explore the scientific capabilities of future X-ray facilities, with a strong focus on investigations of distant groups and clusters of galaxies.

[ascl:1902.009]
ExPRES: Exoplanetary and Planetary Radio Emissions Simulator

ExPRES (Exoplanetary and Planetary Radio Emission Simulator) reproduces the occurrence of CMI-generated radio emissions from planetary magnetospheres, exoplanets or star-planet interacting systems in time-frequency plane, with special attention given to computation of the radio emission beaming at and near its source. Physical information drawn from such radio observations may include the location and dynamics of the radio sources, the type of current system leading to electron acceleration and their energy and, for exoplanetary systems, the magnetic field strength, the orbital period of the emitting body and the rotation period, tilt and offset of the planetary magnetic field. Most of these parameters can be remotely measured only via radio observations. ExPRES code provides the proper framework of analysis and interpretation for past (Cassini, Voyager, Galileo), current (Juno, ground-based radio telescopes) and future (BepiColombo, Juice) observations of planetary radio emissions, as well as for future detection of radio emissions from exoplanetary systems.

[ascl:1706.001]
Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:1708.023]
ExoSOFT: Exoplanet Simple Orbit Fitting Toolbox

ExoSOFT provides orbital analysis of exoplanets and binary star systems. It fits any combination of astrometric and radial velocity data, and offers four parameter space exploration techniques, including MCMC. It is packaged with an automated set of post-processing and plotting routines to summarize results, and is suitable for performing orbital analysis during surveys with new radial velocity and direct imaging instruments.

[ascl:1706.010]
EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[ascl:1703.008]
exorings: Exoring Transit Properties

Exorings is suitable for surveying entire catalogs of transiting planet candidates for exoring candidates, providing a subset of objects worthy of more detailed light curve analysis. Moreover, it is highly suited for uncovering evidence of a population of ringed planets by comparing the radius anomaly and PR-effects in ensemble studies.

[ascl:1501.012]
Exorings: Exoring modelling software

Exorings, written in Python, contains tools for displaying and fitting giant extrasolar planet ring systems; it uses FITS formatted data for input.

[ascl:1603.010]
ExoPriors: Accounting for observational bias of transiting exoplanets

ExoPriors calculates a log-likelihood penalty for an input set of transit parameters to account for observational bias (geometric and signal-to-noise ratio detection bias) of transiting exoplanets. Written in Python, the code calculates this log-likelihood penalty in one of seven user-specified cases specified with Boolean input parameters for geometric and/or SNR bias, grazing or non-grazing events, and occultation events.

[ascl:1407.008]
Exopop: Exoplanet population inference

Exopop is a general hierarchical probabilistic framework for making justified inferences about the population of exoplanets. Written in python, it requires that the occurrence rate density be a smooth function of period and radius (employing a Gaussian process) and takes survey completeness and observational uncertainties into account. Exopop produces more accurate estimates of the whole population than standard procedures based on weighting by inverse detection efficiency.

[ascl:1501.015]
Exoplanet: Trans-dimensional MCMC method for exoplanet discovery

Exoplanet determines the posterior distribution of exoplanets by use of a trans-dimensional Markov Chain Monte Carlo method within Nested Sampling. This method finds the posterior distribution in a single run rather than requiring multiple runs with trial values.

[submitted]
ExoPlanet

ExoPlanet provides a graphical interface for the construction, evaluation and application of a machine learning model in predictive analysis. With the back-end built using the numpy and scikit-learn libraries, ExoPlanet couples fast and well tested algorithms, a UI designed over the PyQt framework, and graphs rendered using Matplotlib. This serves to provide the user with a rich interface, rapid analytics and interactive visuals.

ExoPlanet is designed to have a minimal learning curve to allow researchers to focus more on the applicative aspect of machine learning algorithms rather than their implementation details and supports both methods of learning, providing algorithms for unsupervised and supervised training, which may be done with continuous or discrete labels. The parameters of each algorithms can be adjusted to ensure the best fit for the data. Training data is read from a CSV file, and after training is complete, ExoPlanet automates the building of the visual representations for the trained model. Once training and evaluation yield satisfactory results, the model may be used to make data based predictions on a new data set.

[ascl:1806.020]
exoinformatics: Compute the entropy of a planetary system's size-ordering

exoinformatics computes the entropy of a planetary system's size ordering using three different entropy methods: tally-scores, integral path, and change points.

[ascl:1812.007]
ExoGAN: Exoplanets Generative Adversarial Network

ExoGAN (Exoplanets Generative Adversarial Network) analyzes exoplanetary atmospheres using an unsupervised deep-learning algorithm that recognizes molecular features, atmospheric trace-gas abundances, and planetary parameters. After training, ExoGAN can be applied to a large number of instruments and planetary types and can be used either as a final atmospheric analysis or to provide prior constraints to subsequent retrieval.

[ascl:1201.009]
ExoFit: Orbital parameters of extra-solar planets from radial velocity

ExoFit is a freely available software package for estimating orbital parameters of extra-solar planets. ExoFit can search for either one or two planets and employs a Bayesian Markov Chain Monte Carlo (MCMC) method to fit a Keplerian radial velocity curve onto the radial velocity data.

[ascl:1710.003]
EXOFASTv2: Generalized publication-quality exoplanet modeling code

EXOFASTv2 improves upon EXOFAST (ascl:1207.001) for exoplanet modeling. It uses a differential evolution Markov Chain Monte Carlo code to fit an arbitrary number of transits (each with their own error scaling, normalization, TTV, and/or detrending parameters), an arbitrary number of RV sources (each with their own zero point and jitter), and an arbitrary number of planets, changing nothing but command line arguments and configuration files. The global model includes integrated isochrone and SED models to constrain the stellar properties and can accept priors on any fitted or derived quantities (e.g., parallax from Gaia). It is easily extensible to add additional effects or parameters.

[ascl:1207.001]
EXOFAST: Fast transit and/or RV fitter for single exoplanet

EXOFAST is a fast, robust suite of routines written in IDL which is designed to fit exoplanetary transits and radial velocity variations simultaneously or separately, and characterize the parameter uncertainties and covariances with a Differential Evolution Markov Chain Monte Carlo method. Our code self-consistently incorporates both data sets to simultaneously derive stellar parameters along with the transit and RV parameters, resulting in consistent, but tighter constraints on an example fit of the discovery data of HAT-P-3b that is well-mixed in under two minutes on a standard desktop computer. EXOFAST has an easy-to-use online interface for several basic features of our transit and radial velocity fitting. A more robust version of EXOFAST, EXOFASTv2 (ascl:1710.003), is also available.

[ascl:1512.011]
ExoData: Open Exoplanet Catalogue exploration and analysis tool

ExoData is a python interface for accessing and exploring the Open Exoplanet Catalogue. It allows searching of planets (including alternate names) and easy navigation of hierarchy, parses spectral types and fills in missing parameters based on programmable specifications, and provides easy reference of planet parameters such as GJ1214b.ra, GJ1214b.T, and GJ1214b.R. It calculates values such as transit duration, can easily rescale units, and can be used as an input catalog for large scale simulation and analysis of planets.

[ascl:1803.014]
ExoCross: Spectra from molecular line lists

ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

[ascl:1805.007]
exocartographer: Constraining surface maps orbital parameters of exoplanets

exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.

[ascl:1611.005]
Exo-Transmit: Radiative transfer code for calculating exoplanet transmission spectra

Exo-Transmit calculates the transmission spectrum of an exoplanet atmosphere given specified input information about the planetary and stellar radii, the planet's surface gravity, the atmospheric temperature-pressure (T-P) profile, the location (in terms of pressure) of any cloud layers, the composition of the atmosphere, and opacity data for the atoms and molecules that make up the atmosphere. The code solves the equation of radiative transfer for absorption of starlight passing through the planet's atmosphere as it transits, accounting for the oblique path of light through the planetary atmosphere along an Earth-bound observer's line of sight. The fraction of light absorbed (or blocked) by the planet plus its atmosphere is calculated as a function of wavelength to produce the wavelength-dependent transmission spectrum. Functionality is provided to simulate the presence of atmospheric aerosols in two ways: an optically thick (gray) cloud deck can be generated at a user-specified height in the atmosphere, and the nominal Rayleigh scattering can be increased by a specified factor.

[ascl:1806.029]
EXO-NAILER: EXOplanet traNsits and rAdIal veLocity fittER

EXO-NAILER (EXOplanet traNsits and rAdIal veLocity fittER) efficiently fits exoplanet transit lightcurves, radial velocities (RVs) or both. The code handles data taken with different instruments. For RVs, a different center-of-mass velocity can be fitted for each instrument to account for offsets between them; if jitter is included, a different jitter term can also fitted for each instrument. For transits, a different photometric jitter can be fitted to each instrument as can different limb-darkening coefficients and different transit depths. In addition to general options that need to be set, EXO-NAILER also requires that photometry and radial velocity options be defined for each instrument.

[ascl:1204.011]
EXCOP: EXtraction of COsmological Parameters

The EXtraction of COsmological Parameters software (EXCOP) is a set of C and IDL programs together with a very large database of cosmological models generated by CMBFAST that will compute likelihood functions for cosmological parameters given some CMB data. This is the software and database used in the Stompor et al. (2001) analysis of a high resoultion Maxima1 CMB anisotropy map.

[ascl:1905.003]
evolstate: Assign simple evolutionary states to stars

evolstate assigns crude evolutionary states (main-sequence, subgiant, red giant) to stars given an input temperature and radius/surface gravity, based on physically motivated boundaries from solar metallicity interior models.

[ascl:1807.029]
EVEREST: Tools for de-trending stellar photometry

Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

EVEREST (EPIC Variability Extraction and Removal for Exoplanet Science Targets) removes instrumental noise from light curves with pixel level decorrelation and Gaussian processes. The code, written in Python, generates the EVEREST catalog and offers tools for accessing and interacting with the de-trended light curves. EVEREST exploits correlations across the pixels on the CCD to remove systematics introduced by the spacecraft’s pointing error. For K2, it yields light curves with precision comparable to that of the original Kepler mission. Interaction with the EVEREST catalog catalog is available via the command line and through the Python interface. Though written for K2, EVEREST can be applied to additional surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets.

[ascl:1307.018]
ETC++: Advanced Exposure-Time Calculations

ETC++ is a exposure-time calculator that considers the effect of cosmic rays, undersampling, dithering, and imperfect pixel response functions. Errors on astrometry and galaxy shape measurements can be predicted as well as photometric errors.

[ascl:1311.012]
ETC: Exposure Time Calculator

Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

Written for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey, the exposure time calculator (ETC) works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The program may be useful outside of WFIRST but no warranties are made regarding its suitability for general purposes. The software is available for download; IPAC maintains a web interface for those who wish to run a small number of cases without having to download the package.

[ascl:1305.001]
ESTER: Evolution STEllaire en Rotation

The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

[ascl:1405.017]
ESP: Extended Surface Photometry

ESP (Extended Surface Photometry) determines the photometric properties of galaxies and other extended objects. It has applications that detect flatfielding faults, remove cosmic rays, median filter images, determine image statistics and local background values, perform galaxy profiling, fit 2-D Gaussian profiles to galaxies, generate pie slice cross-sections of galaxies, and display profiling results. It is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1504.003]
EsoRex: ESO Recipe Execution Tool

EsoRex (ESO Recipe Execution Tool) lists, configures, and executes Common Pipeline Library (CPL) (ascl:1402.010) recipes from the command line. Its features include automatically generating configuration files, recursive recipe-path searching, command line and configuration file parameters, and recipe product naming control, among many others.

[ascl:1302.017]
ESO-MIDAS: General tools for image processing and data reduction

The ESO-MIDAS system provides general tools for image processing and data reduction with emphasis on astronomical applications including imaging and special reduction packages for ESO instrumentation at La Silla and the VLT at Paranal. In addition it contains applications packages for stellar and surface photometry, image sharpening and decomposition, statistics, data fitting, data presentation in graphical form, and more.

Would you like to view a random code?