Results 401-450 of 2171 (2130 ASCL, 41 submitted)

[ascl:1807.027]
kplr: Tools for working with Kepler data using Python

kplr provides a lightweight Pythonic interface to the catalog of planet candidates (Kepler Objects of Interest [KOIs]) in the NASA Exoplanet Archive and the data stored in the Barbara A. Mikulski Archive for Space Telescopes (MAST). kplr automatically supports loading Kepler data using pyfits (ascl:1207.009) and supports two types of data: light curves and target pixel files.

[ascl:1807.026]
SENR: Simple, Efficient Numerical Relativity

SENR (Simple, Efficient Numerical Relativity) provides the algorithmic framework that combines the C codes generated by NRPy+ (ascl:1807.025) into a functioning numerical relativity code. It is part of the numerical relativity code package SENR/NRPy+. The package extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it suitable for modeling physical configurations with approximate or exact symmetries, such as modeling black hole dynamics.

[ascl:1807.025]
NRPy+: Code generator for Numerical Relativity

NRPy+ (Python-based Code generation for Numerical Relativity and Beyond) generates highly-optimized C code from complex tensorial expressions input in Einstein-like notation. NRPy+ uses SymPy as its computer algebra system backend. It is part of the NRPy+/SENR numerical relativity code package for solving Einstein's equations of general relativity to model compact objects at about 1/100 the cost in memory of more traditional, AMR-based numerical relativity codes, thus allowing desktop computers to be used for gravitational wave astrophysics.

[ascl:1807.024]
TBI: Three-Body Integration

Three-Body Integration performs numerical n-body simulations for mapping conditions for close approaches for the relevant parameter space of configurations and mass values of two white dwarfs and a third star. Low tertiary masses of 0.1M⊙ can be studied, and the collision probability can be estimated with good confidence for the case of nearly equal mass white dwarfs.

[ascl:1807.023]
DAMOCLES: Monte Carlo line radiative transfer code

The Monte Carlo code DAMOCLES models the effects of dust, composed of any combination of species and grain size distributions, on optical and NIR emission lines emitted from the expanding ejecta of a late-time (> 1 yr) supernova. The emissivity and dust distributions follow smooth radial power-law distributions; any arbitrary distribution can be specified by providing the appropriate grid. DAMOCLES treats a variety of clumping structures as specified by a clumped dust mass fraction, volume filling factor, clump size and clump power-law distribution, and the emissivity distribution may also initially be clumped. The code has a large number of variable parameters ranging from 5 dimensions in the simplest models to > 20 in the most complex cases.

[ascl:1807.022]
PUMA: Low-frequency radio catalog cross-matching

PUMA (Positional Update and Matching Algorithm) cross-matches low-frequency radio catalogs using a Bayesian positional probability with spectral matching criteria. The code reliably finds the correct spectral indices of sources and recovers ionospheric offsets. PUMA can be used to facilitate all-sky cross-matches with further constraints applied for other science goals.

[ascl:1807.021]
POWER: Python Open-source Waveform ExtractoR

POWER (Python Open-source Waveform ExtractoR) monitors the status and progress of numerical relativity simulations and post-processes the data products of these simulations to compute the gravitational wave strain at future null infinity.

[ascl:1807.020]
wdmerger: Simulate white dwarf mergers with CASTRO

wdmerger simulates binary white dwarf mergers (and related events) in CASTRO (ascl:1105.010) and provides useful information on the viability of mergers of white dwarfs as a progenitor for Type Ia supernovae.

[ascl:1807.019]
GLS: Generalized Lomb-Scargle periodogram

The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. GLS is a solution for the generalization to a full sine wave fit, including an offset and weights (χ2 fitting). Compared to the Lomb-Scargle periodogram, GLS is superior as it provides more accurate frequencies, is less susceptible to aliasing, and gives a much better determination of the spectral intensity.

[ascl:1807.018]
BARYCORR: Python interface for barycentric RV correction

BARYCORR is a Python interface for ZBARYCORR (ascl:1807.017); it requires the measured redshift and returns the corrected barycentric velocity and time correction.

[ascl:1807.017]
ZBARYCORR: Barycentric redshift calculator

ZBARYCORR determines the barycentric redshift (*z _{B}*) for a given star. It calculates the positions and velocities of solar system objects, applies the rotation, precession, nutation, and polar motion of the Earth, applies the stellar motion using the Markwardt library (ascl:1807.016), Shapiro delay, and light-travel term, and finally calculates the quantity

[ascl:1807.016]
MIDLL: Markwardt IDL Library

The Markwardt IDL Library contains routines for curve fitting and function minimization, including MPFIT (ascl:1208.019), statistical tests, and non-linear optimization (TNMIN); graphics programs including plotting three-dimensional data as a cube and fixed- or variable-width histograms; adaptive numerical integration (Quadpack), Chebyshev approximation and interpolation, and other mathematical tools; many ephemeris and timing routines; and array and set operations, such as computing the fast product of a large array, efficiently inserting or deleting elements in an array, and performing set operations on numbers and strings; and many other useful and varied routines.

[ascl:1807.015]
CAESAR: Compact And Extended Source Automated Recognition

CAESAR extracts and parameterizes both compact and extended sources from astronomical radio interferometric maps. The processing pipeline is a series of stages that can run on multiple cores and processors. After local background and rms map computation, compact sources are extracted with flood-fill and blob finder algorithms, processed (selection + deblending), and fitted using a 2D gaussian mixture model. Extended source search is based on a pre-filtering stage, allowing image denoising, compact source removal and enhancement of diffuse emission, followed by a final segmentation. Different algorithms are available for image filtering and segmentation. The outputs delivered to the user include source fitted and shape parameters, regions and contours. Written in C++, CAESAR is designed to handle the large-scale surveys planned with the Square Kilometer Array (SKA) and its precursors.

[ascl:1807.014]
SPEGID: Single-Pulse Event Group IDentification

SPEGID (Single-Pulse Event Group IDentification) identifies astrophysical pulse candidates as trial single-pulse event groups (SPEGs) by first applying Density Based Spatial Clustering of Applications with Noise (DBSCAN) on trial single-pulse events and then merging the clusters that fall within the expected DM (Dispersion Measure) and time span of astrophysical pulses. SPEGID also calculates the peak score for each SPEG in the S/N versus DM space to identify the expected peak-like shape in the signal-to-noise (S/N) ratio versus DM curve of astrophysical pulses. Additionally, SPEGID groups SPEGs that appear at a consistent DM and therefore are likely emitted from the same source. After running SPEGID, periocity.py can be used to find (or verify) the underlying periodicity among a group of SPEGs (i.e., astrophysical pulse candidates).

[ascl:1807.013]
CLASSgal: Relativistic cosmological large scale structure code

CLASSgal computes large scale structure observables; it includes all relativistic corrections and computes both the power spectrum *C _{l}*(

[ascl:1807.012]
AngPow: Fast computation of accurate tomographic power spectra

AngPow computes the auto (z1 = z2) and cross (z1 ≠ z2) angular power spectra between redshift bins (i.e. Cℓ(z1,z2)). The developed algorithm is based on developments on the Chebyshev polynomial basis and on the Clenshaw-Curtis quadrature method. AngPow is flexible and can handle any user-defined power spectra, transfer functions, bias functions, and redshift selection windows. The code is fast enough to be embedded inside programs exploring large cosmological parameter spaces through the Cℓ(z1,z2) comparison with data.

[ascl:1807.011]
nfield: Stochastic tool for QFT on inflationary backgrounds

nfield uses a stochastic formalism to compute the IR correlation functions of quantum fields during cosmic inflation in n-field dimensions. This is a necessary 1-loop resummation of the correlation functions to render them finite. The code supports the implementation of n-numbers of coupled test fields (energetically sub-dominant) as well as non-test fields.

[ascl:1807.010]
THOR: Global Circulation Model for planetary atmospheres

THOR solves the three-dimensional nonhydrostatic Euler equations. The code implements an icosahedral grid for the poles where converging meridians lead to increasingly smaller time steps; irregularities in the grid are smoothed using spring dynamics. THOR is designed to run on graphics processing units (GPUs) and is part of the open-source Exoclimes Simulation Platform.

[ascl:1807.009]
HELIOS: Radiative transfer code for exoplanetary atmospheres

Malik, Matej; Grosheintz, Luc; Mendonça, João M.; Grimm, Simon L.; Lavie, Baptiste; Kitzmann, Daniel; Tsai, Shang-Min; Burrows, Adam; Kreidberg, Laura; Bedell, Megan; Bean, Jacob L.; Stevenson, Kevin B.; Heng, Kevin

HELIOS, a radiative transfer code, is constructed for studying exoplanetary atmospheres. The model atmospheres of HELIOS are one-dimensional and plane-parallel, and the equation of radiative transfer is solved in the two-stream approximation with non-isotropic scattering. Though HELIOS can be used alone, the opacity calculator HELIOS-K (ascl:1503.004) can be used with it to provide the molecular opacities.

[ascl:1807.008]
HII-CHI-mistry_UV: Oxygen abundance and ionizionation parameters for ultraviolet emission lines

HII-CHI-mistry_UV derives oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas phase ionized by massive stars. The code first fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionization parameter from carbon lines in the UV. An optical version of this Python code, HII-CHI-mistry (ascl:1807.007), is also available.

[ascl:1807.007]
HII-CHI-mistry: Oxygen abundance and ionizionation parameters for optical emission lines

HII-CHI-mistry calculates the oxygen abundance for gaseous nebulae ionized by massive stars using optical collisionally excited emission lines. This code takes the extinction-corrected emission line fluxes and, based on a *Χ*^{2} minimization on a photoionization models grid, determines chemical-abundances (O/H, N/O) and ionization parameters. An ultraviolet version of this Python code, HII-CHI-mistry-UV (ascl:1807.008), is also available.

[ascl:1807.006]
pyqz: Emission line code

pyqz computes the values of log(Q) [the ionization parameter] and 12+log(O/H) [the oxygen abundance, either total or in the gas phase] for a given set of strong emission lines fluxes from HII regions. The log(Q) and 12+log(O/H) values are interpolated from a finite set of diagnostic line ratio grids computed with the MAPPINGS V code (ascl:1807.005). The grids used by pyqz are chosen to be flat, without wraps, to decouple the influence of log(Q) and 12+log(O/H) on the emission line ratios.

[ascl:1807.005]
MAPPINGS V: Astrophysical plasma modeling code

MAPPINGS V is a update of the MAPPINGS code (ascl:1306.008) and provides new cooling function computations for optically thin plasmas based on the greatly expanded atomic data of the CHIANTI 8 database. The number of cooling and recombination lines has been expanded from ~2000 to over 80,000, and temperature-dependent spline-based collisional data have been adopted for the majority of transitions. The expanded atomic data set provides improved modeling of both thermally ionized and photoionized plasmas; the code is now capable of predicting detailed X-ray spectra of nonequilibrium plasmas over the full nonrelativistic temperature range, increasing its utility in cosmological simulations, in modeling cooling flows, and in generating accurate models for the X-ray emission from shocks in supernova remnants.

[ascl:1807.004]
ARKCoS: Radial kernel convolution on the sphere

ARKCoS (Accelerated radial kernel convolution on the sphere) efficiently convolves pixelated maps on the sphere with radially symmetric kernels with compact support. It performs the convolution along isolatitude rings in Fourier space and integrates in longitudinal direction in pixel space. The computational costs scale linearly with the kernel support, making the method most beneficial for convolution with compact kernels. Typical applications include CMB beam smoothing, symmetric wavelet analyses, and point-source filtering operations. The software is written in C++/CUDA and provides two independent code paths to do the necessary computation either on conventional hardware (CPUs), or on graphics processing units (GPUs).

[ascl:1807.003]
PyAutoLens: Strong lens modeling

PyAutoLens models and analyzes galaxy-scale strong gravitational lenses. This automated module suite simultaneously models the lens galaxy's light and mass while reconstructing the extended source galaxy on an adaptive pixel-grid. Source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing PyAutoLens to cleanly deblend its light from the source. Bayesian model comparison is used to automatically chose the complexity of the light and mass models. PyAutoLens provides accurate light, mass, and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

[ascl:1807.002]
Warpfield: Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution

Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥10^{5} M_{☉}). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation f_{esc, I}, the minimum star formation efficiency ∊_{min} required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.

[ascl:1807.001]
POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:1806.032]
pwv_kpno: Modeling atmospheric absorption

pwv_kpno provides models for the atmospheric transmission due to precipitable water vapor (PWV) at user specified sites. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column density along the line of sight. The pwv_kpno package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission between 3,000 and 12,000 Å. By default, models are provided for Kitt Peak National Observatory (KPNO). Additional locations can be added by the user for any of the hundreds of SuomiNet locations worldwide.

[ascl:1806.031]
ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology

Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.

[ascl:1806.030]
foxi: Forecast Observations and their eXpected Information

Using information theory and Bayesian inference, the foxi Python package computes a suite of expected utilities given futuristic observations in a flexible and user-friendly way. foxi requires a set of n-dim prior samples for each model and one set of n-dim samples from the current data, and can calculate the expected ln-Bayes factor between models, decisiveness between models and its maximum-likelihood averaged equivalent, the decisivity, and the expected Kullback-Leibler divergence (i.e., the expected information gain of the futuristic dataset). The package offers flexible inputs and is designed for all-in-one script calculation or an initial cluster run then local machine post-processing, which should make large jobs quite manageable subject to resources and includes features such as LaTeX tables and plot-making for post-data analysis visuals and convenience of presentation.

[ascl:1806.029]
EXO-NAILER: EXOplanet traNsits and rAdIal veLocity fittER

EXO-NAILER (EXOplanet traNsits and rAdIal veLocity fittER) efficiently fits exoplanet transit lightcurves, radial velocities (RVs) or both. The code handles data taken with different instruments. For RVs, a different center-of-mass velocity can be fitted for each instrument to account for offsets between them; if jitter is included, a different jitter term can also fitted for each instrument. For transits, a different photometric jitter can be fitted to each instrument as can different limb-darkening coefficients and different transit depths. In addition to general options that need to be set, EXO-NAILER also requires that photometry and radial velocity options be defined for each instrument.

[ascl:1806.028]
PyMUSE: VLT/MUSE data analyzer

PyMUSE analyzes VLT/MUSE datacubes. The package is optimized to extract 1-D spectra of arbitrary spatial regions within the cube and also for producing images using photometric filters and customized masks. It is intended to provide the user the tools required for a complete analysis of a MUSE data set.

[ascl:1806.027]
fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2

fcmaker creates astronomical finding charts for Observing Blocks (OBs) on the p2 web server from the European Southern Observatory (ESO). It automates the creation of ESO-compliant finding charts for Service Mode and/or Visitor Mode OBs at the Very Large Telescope (VLT). The design of the fcmaker finding charts, based on an intimate knowledge of VLT observing procedures, is fine-tuned to best support night time operations. As an automated tool, fcmaker also allows observers to independently check visually, for the first time, the observing sequence coded inside an OB. This includes, for example, the signs of telescope and position angle offsets.

[ascl:1806.026]
BWED: Brane-world extra dimensions

Braneworld-extra-dimensions places constraints on the size of the AdS5 radius of curvature within the Randall-Sundrum brane-world model in light of the near-simultaneous detection of the gravitational wave event GW170817 and its optical counterpart, the short γ-ray burst event GRB170817A. The code requires a (supplied) patch to the Montepython cosmological MCMC sampler (ascl:1805.027) to sample the posterior distribution of the 4-dimensional parameter space in VBV17 and obtain constraints on the parameters.

[ascl:1806.025]
BRATS: Broadband Radio Astronomy ToolS

BRATS (Broadband Radio Astronomy ToolS) provides tools for the spectral analysis of broad-bandwidth radio data and legacy support for narrowband telescopes. It can fit models of spectral ageing on small spatial scales, offers automatic selection of regions based on user parameters (e.g. signal to noise), and automatic determination of the best-fitting injection index. It includes statistical testing, including Chi-squared, error maps, confidence levels and binning of model fits, and can map spectral index as a function of position. It also provides the ability to reconstruct sources at any frequency for a given model and parameter set, subtract any two FITS images and output residual maps, easily combine and scale FITS images in the image plane, and resize radio maps.

[ascl:1806.024]
RMextract: Ionospheric Faraday Rotation calculator

RMextract calculates Ionospheric Faraday Rotation for a given epoch, location and line of sight. This Python code extracts TEC, vTEC, Earthmagnetic field and Rotation Measures from GPS and WMM data for radio interferometry observations.

[ascl:1806.023]
Spheral++: Coupled hydrodynamical and gravitational numerical simulations

Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.

[ascl:1806.022]
Keras: The Python Deep Learning library

Keras is a high-level neural networks API written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It focuses on enabling fast experimentation.

[ascl:1806.021]
LASR: Linear Algorithm for Significance Reduction

LASR removes stellar variability in the light curves of δ-Scuti and similar stars. It subtracts oscillations from a time series by minimizing their statistical significance in frequency space.

[ascl:1806.020]
exoinformatics: Compute the entropy of a planetary system's size-ordering

exoinformatics computes the entropy of a planetary system's size ordering using three different entropy methods: tally-scores, integral path, and change points.

[ascl:1806.019]
SYGMA: Modeling stellar yields for galactic modeling

SYGMA (Stellar Yields for Galactic Modeling Applications) follows the ejecta of simple stellar populations as a function of time to model the enrichment and feedback from simple stellar populations. It is the basic building block of the galaxy code One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) and is part of the NuGrid Python Chemical Evolution Environment (NuPyCEE, ascl:1610.015). Stellar yields of AGB and massive stars are calculated with the same nuclear physics and are provided by the NuGrid collaboration.

[ascl:1806.018]
OMEGA: One-zone Model for the Evolution of GAlaxies

OMEGA (One-zone Model for the Evolution of GAlaxies) calculates the global chemical evolution trends of galaxies. From an input star formation history, it uses SYGMA to create as a function of time multiple simple stellar populations with different masses, ages, and initial compositions. OMEGA offers several prescriptions for modeling the star formation efficiency and the evolution of galactic inflows and outflows. OMEGA is part of the NuGrid (ascl:1610.015) chemical evolution package.

[ascl:1806.017]
RadFil: Radial density profile builder for interstellar filaments

RadFil is a radial density profile building and fitting tool for interstellar filaments. The software uses an image array and (in most cases) a boolean mask array that delineates the boundary of the filament to build and fit a radial density profile for the filaments.

[ascl:1806.016]
DirectDM-py: Dark matter direct detection

DirectDM, written in Python, takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Mathematica implementation of DirectDM is also available (ascl:1806.015).

[ascl:1806.015]
DirectDM-mma: Dark matter direct detection

The Mathematica code DirectDM takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Python implementation of DirectDM is also available (ascl:1806.016).

[ascl:1806.014]
pile-up: Monte Carlo simulations of star-disk torques on hot Jupiters

The pile-up gnuplot script generates a Monte Carlo simulation with a selectable number of randomized drawings (1000 by default, ~1min on a modern laptop). For each realization, the script calculates the torque acting on a hot Jupiter around a young, solar-type star as a function of the star-planet distance. The total torque on the planet is composed of the disk torque in the type II migration regime (that is, the planet is assumed to have opened up a gap in the disk) and of the stellar tidal torque. The model has four free parameters, which are drawn from a normal or lognormal distribution: (1) the disk's gas surface density at 1 astronomical unit, (2) the magnitude of tidal dissipation within the star, (3) the disk's alpha viscosity parameter, and (4) and the mean molecular weight of the gas in the disk midplane. For each realization, the total torque is screened for a distance at which it becomes zero. If present, then this distance would represent a tidal migration barrier to the planet. In other words, the planet would stop migrating. This location is added to a histogram on top of the main torque-over-distance panel and the realization is counted as one case that contributes to the overall survival rate of hot Jupiters. Finally, the script generates an output file (PDF by default) and prints the hot Jupiter survival rate for the assumed parameterization of the star-planet-disk system.

[ascl:1806.013]
SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[ascl:1806.012]
WDEC: White Dwarf Evolution Code

WDEC (White Dwarf Evolution Code), written in Fortran, offers a fast and fairly easy way to produce models of white dwarfs. The code evolves hot (~100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models.

[ascl:1806.011]
P2DFFT: Parallelized technique for measuring galactic spiral arm pitch angles

P2DFFT is a parallelized version of 2DFFT (ascl:1608.015). It isolates and measures the spiral arm pitch angle of galaxies. The code allows direct input of FITS images, offers the option to output inverse Fourier transform FITS images, and generates idealized logarithmic spiral test images of a specified size that have 1 to 6 arms with pitch angles of -75 degrees to 75 degrees. Further, it can output Fourier amplitude versus inner radius and pitch angle versus inner radius for each Fourier component (m = 0 to m = 6), and calculates the Fourier amplitude weighted mean pitch angle across m = 1 to m = 6 versus inner radius.

[ascl:1806.010]
SpaghettiLens: Web-based gravitational lens modeling tool

SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.

Would you like to view a random code?