ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Beroiz, M'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1904.025] Properimage: Image coaddition and subtraction

Properimage processes astronomical image; it is specially written for coaddition and image subtraction. It performs the statistical proper-coadd of several images using a spatially variant PSF estimation, and also difference image analysis by several strategies developed by others. Most of the code is based on a class called SingleImage, which provides methods and properties for image processing such as PSF determination.

[ascl:1808.003] CPF: Corral Pipeline Framework

Corral generates astronomical pipelines. Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. Written in Python, Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling custom data models, processing stages, and communication alerts. It also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities.

[ascl:1906.001] Astroalign: Asterism-matching alignment of astronomical images

Astroalign tries to register (align) two stellar astronomical images, especially when there is no WCS information available. It does so by finding similar 3-point asterisms (triangles) in both images and deducing the affine transformation between them. Generic registration routines try to match feature points, using corner detection routines to make the point correspondence. These generally fail for stellar astronomical images since stars have very little stable structure so are, in general, indistinguishable from each other. Asterism matching is more robust and closer to the human way of matching stellar images. Astroalign can match images of very different field of view, point-spread function, seeing and atmospheric conditions. It may require special care or may not work on images of extended objects with few point-like sources or in crowded fields.