Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Vigan, A'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1603.001] SILSS: SPHERE/IRDIS Long-Slit Spectroscopy pipeline

The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.

[ascl:1806.003] pyZELDA: Python code for Zernike wavefront sensors

pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

[submitted] vlt-sphere: Automatic VLT/SPHERE data reduction and analysis

The high-contrast imager SPHERE at the Very Large Telescope is a new generation instrument combining extreme adaptive optics and coronagraphy to directly image exoplanets in the near-infrared. The vlt-sphere package enables easy reduction of the data coming from IRDIS and IFS, the two near-infrared subsystems of SPHERE. The package relies on the official ESO pipeline (ascl:1402.010) which must be installed separately.

[ascl:2004.015] IRDAP: SPHERE-IRDIS polarimetric data reduction pipeline

IRDAP (IRDIS Data reduction for Accurate Polarimetry) accurately reduces SPHERE-IRDIS polarimetric data. It is a highly-automated end-to-end pipeline; its core feature is model-based correction of the instrumental polarization effects. IRDAP handles data taken both in field- and pupil-tracking mode and using the broadband filters Y, J, H and Ks. Data taken with the narrowband filters can be reduced as well, although with a somewhat worse accuracy. For pupil-tracking observations IRDAP can additionally apply angular differential imaging.