Visualization and exploration of a billion stars in the Jupyter notebook.

Maarten A, Breddels breddels@astro.rug.nl

vaex

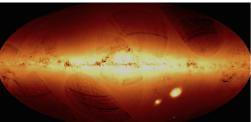
Challenge

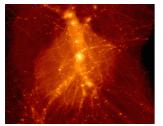
With large astronomical catalogues (>1 billion) such as the Gaia catalogue, and Pan-STARRS we need new methods to visualize and explore these large datasets. Scatter plots lead to overplotting, making these often useless and too slow (>> 1 minute). **Solution**

We solve the performance and visualization issue using binned statistics, e.g. histograms, density maps, and volume rendering in 3d. The Python package vaex can process a billion rows per second, and

visualize it.

Websites


http://vaex.astro.rug.nl


https://github.com/maartenbreddels/vaex Summary

Yes, you can visualise 1 billion stars (e.g. the whole Gaia catalogue) in \sim 1 second.

Examples:

Whole Gaia DR1 catalogue (1e9 stars)

Aquarius-A2 dark matter simulation (6e8 particles)

New York Taxi dataset (1e9 rows)

ipyvolume

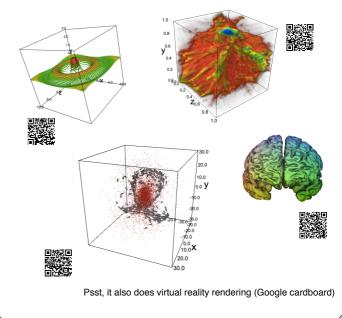
The missing 3d plotting library

The Python Jupyter notebook is often the default environment for (data) scientist. However, it is (or was!) lacking a 3d visualisation library that integrates in the notebook.

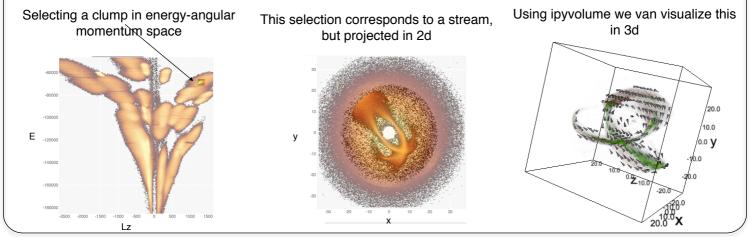
Solution

ipyvolume:

- easy matplotlib like API
- volume rendering
- scatter + quiver plot
- animations


Upcoming

- Lines and mesh plotting
- 100x faster binary data transfer
- Websites:


https://ipyvolume.readthedocs.io/

https://github.com/maartenbreddels/ipyvolume Summary

Interactive 3d plotting in the Jupyter notebook Examples (scan the QR code for a live demo):

Combing vaex, bqplot and ipyvolume in the Jupyter notebook

TL;DR, but show my how to generate some of these plots! Check out https://goo.gl/vk6ccX

