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Research Computing in the UK

Tier 0

Tier 1

Tier 2

Tier 3

• Research software engineering effort facilitates movement between 
tiers and across services within tiers 

• Optimises use of all available resources

+

CSD3

DiRAC: HPC for 
theoretical 
astrophysics, 
particle physics, 
cosmology and 
nuclear physics 



DiRAC 2.5x

Service Description Available
Extreme Scaling 
(Edinburgh) 20256 cores; 0.97 PF 1st May 2018

Memory Intensive 
(Durham)

Max RAM footprint 114TB; 15428 cores;  
0.38 PF

Partial until 1st 
May 2018

Data Intensive 
(Cambridge, 
Leicester)

67 TF Xeon Phi; Max job size 500 TF

130 TFlop/s GPU; Max job size 1 PF

17000 Xeon cores; 0.5 PFlop/s Partial until 1st 
May 2018

3x 1.5TB RAM nodes; 1x 6TB (144 core) 
Superdome shared-memory server 1st May 2018
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• Total ~2 PFlop/s across all services

Diverse science cases require heterogenous architectures



Research Software Engineers

“With great power comes great responsibility” 

• Science requirements for DiRAC-3 demand 10-40x increases in 
computing power to stay competitive
- hardware alone cannot deliver this  

• We can no longer rely on “free lunch” from the Xeon era 
• Vectorisation and code efficiency now vital 
• Current and next generation hardware more difficult to program

- Vendors are putting more demands on users  
• Research Software Engineers are increasingly important 

- RSEs can help with code profiling, optimisation, porting, etc

algorithm
ic

computat
ional

David Keyes
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DiRAC Software engineering activities
• RSE effort:

- 3 FTE available - embedded within University teams 
- Allocated via peer review process: details at dirac.ac.uk 

• Training workshops: Many-Core programming; Software Design 
& Optimisation; MPI programming 
• Three Intel Parallel Computing Centres:

- COSMOS: MODAL, GRChombo, OSPRay 
- Edinburgh: GRID 
- Durham: Swift (see Matthieu Schaller’s talk) 

• Hackathons:
- NVidia hackathon before DiRAC Day, Sept 2018  

• Support for STFC CDTs in Data Intensive Science
• Focus on library development to maximise impact
• Enables use of new hardware and provides greater flexibility in 
future procurements

http://dirac.ac.uk
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Figure 1.16: Speed-up for miniModal at each stage of optimization.

Version SNB (s) KNC (s) Comment
1 2887.0 - Original code.
2 2610.0 - Loop simplification.
3 882.0 - MKL integration routines and function inlining.
4 865.9 1991.6 Flattened loops and introduced OpenMP threads.
5 450.6 667.9 Loop reordering and manual nested threading.
6 385.6 655.0 Blocked version of the loop (for cache).
7 46.9 49.5 Numerical integration routine (Trapezium Rule).
8 37.4 37.7 Reduction with DGEMM.
9 35.1 34.5 Data alignment (for vectorization).
10 34.3 26.6 Tuning of software prefetching distances.

Figure 1.17: Execution times of miniModal at each stage of optimization.

best practices should not be underestimated. Versions 4–6 see the total speed-
up grow further (7.5⇥ on SNB, 3.0⇥ on KNC), but KNC remains slower due
to the large memory footprint of MKL’s cubic spline routines. It is not until
we make a dramatic change to the core algorithm in Version 7 (by switching
to numerical integration) and subsequently tune it in Versions 8–10 that KNC
overtakes SNB, and we reach a performance ratio similar to what we should
expect: specifically, a single KNC being ⇡ 1.5⇥ faster than two SNB sockets.

The total speedup relative to the original baseline code is close to 100⇥ on
both platforms. Further, the results shown here use only two SNB sockets or
one KNC – by dividing the complete problem space across nodes using MPI,
and then sub-dividing across the SNB and KNC present in each node, the
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DiRAC Software Innovation 
 MODAL XEON PHI MODERNIZATION (COSMOS IPCC)
•  Multi-/many-core optimisation: 100-1000x speed-ups  
 Enabling new science - required significant RSE effort 

•  HPC publications; Xeon Phi course (EPCC); ISC’15 Lecture; 
•  Winner of HPCWire Readers’ Choice award 2015

Modal3D optimizations
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• OSPRay XEON PHI Viz - collaboration between COSMOS 
IPCC and Intel 

Demonstrator of remote visualisation on Xeon Phi
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DiRAC Software Innovation 



Software Innovation - AI on HPC
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FIG. 4: Percentage of time spent in communications calls vs. vector length before and after our optimisation. The computation
becomes dominant at large vector lengths in the original code, but is sub-dominant in the optimised code despite the optimised code
being over 10x faster. This is not unreasonable since the threading of the relevant loops should gain a factor of O(64) on many core
processors.
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FIG. 5: Wall clock time per reduction call vs. vector length before and after our optimisation. The large vector reduction
performance is ten times better after our optimisations on large vector lengths. The gain includes both computation acceleration
and communication acceleration.

of the interface to memory management is not ideal.

Rather, it is likely that method dealloc and alloc routine provided by collectives.h should have been used consistently,
with use of any other “free” operation declared illegal. Further, this would have enabled simpler modification of the
allocation and deallocation implementation. It would also have been better to separate the vector allocation from the
reduction operation; so that in hot loops the programmer could choose to reuse the same allocation.

Our first optimisations were high level: i) remove the expectation that the caller deallocates the returned vector; ii)
the reduction routine was modified to cache the most recently returned pointer and the vector length for reuse if a
subsequent call does not require a longer vector. Deallocation/reallocation is suppressed to points in the code where
the vector length increases. This change was made by introducing an caching “Alloc” and “Dealloc” routine for
internal vectors as a quick and dirty solution. [8]

static float *buffer;
static float *output;
static size_t allocated_length;
void Alloc(size_t length)
{

if ( length == 0 ) length=1;
if ( length > allocated_length ) {
if ( allocated_length > 0 ) {

Boyle et al. 
2017

• Demonstration of factor 10 speed-up in the Baidu Research 
optimised reduction code 

- a publicly available code designed to optimise the performance 

limiting steps in distributed machine learning 
• potentially disruptive implications for design of cloud systems 


- shows that ML workflows can achieve 10x performance 
improvement when fully optimised and implemented on traditional 
HPC architectures !8



DiRAC Training
• DiRAC provides access to training from wide pool of providers
• Currently offering:

- DiRAC Driving Test: now available online (and compulsory!) 
- Workshops: Many-Core programming; Software Design & 
Optimisation; MPI programming 

•  Under development:
- Domain-specific workshops 
- Online individual training portal 
- Industry-focussed training pathways 

Why do we do this?
- maximise DiRAC science output  
- flexibility to adopt most cost-effective technologies 
- future-proofing our software and skills 
- contributes to increasing skills of wider UK economy
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Conclusions
• Goal is to maximise the science you can do on DiRAC 
• Research software engineering is increasingly important 
• DiRAC provides access to training and RSE effort from wide 
pool of providers
• Do engage with these opportunities:
- Greater flexibility in future procurements means DiRAC-3 
can be more powerful and productive for your science 

• Tell us if we have missed something: 
  dirac.ac.uk
  mark.wilkinson@leicester.ac.uk
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