Research Software Engineering: The DiRAC Facility Experience

Mark Wilkinson, Director

Science & Technology Facilities Council

Research Computing in the UK

- Research software engineering effort facilitates movement between tiers and across services within tiers
- Optimises use of all available resources

DiRAC 2.5x

Diverse science cases require heterogenous architectures

Service	Description	Available
Extreme Scaling (Edinburgh)	20256 cores; 0.97 PF	1st May 2018
Memory Intensive (Durham)	Max RAM footprint 114TB; 15428 cores; 0.38 PF	Partial until 1st May 2018
Data Intensive (Cambridge, Leicester)	67 TF Xeon Phi; Max job size 500 TF	
	130 TFlop/s GPU; Max job size 1 PF	
	17000 Xeon cores; 0.5 PFlop/s	Partial until 1st May 2018
	3x 1.5TB RAM nodes; 1x 6TB (144 core) Superdome shared-memory server	1st May 2018

Total ~2 PFlop/s across all services

Research Software Engineers computational "With great power comes great responsibility" David Keyes

- Science requirements for DiRAC-3 demand 10-40x increases in computing power to stay competitive
 - hardware alone cannot deliver this
- We can no longer rely on "free lunch" from the Xeon era
- Vectorisation and code efficiency now vital
- Current and next generation hardware more difficult to program
 Vendors are putting more demands on users
- Research Software Engineers are increasingly important
 - RSEs can help with code profiling, optimisation, porting, etc

DiRAC Software engineering activities

- RSE effort:
 - 3 FTE available embedded within University teams
 - Allocated via peer review process: details at dirac.ac.uk
- Training workshops: Many-Core programming; Software Design & Optimisation; MPI programming
- Three Intel Parallel Computing Centres:
 - COSMOS: MODAL, GRChombo, OSPRay
 - Edinburgh: GRID
 - Durham: Swift (see Matthieu Schaller's talk)
- Hackathons:
 - NVidia hackathon before DiRAC Day, Sept 2018
- Support for STFC CDTs in Data Intensive Science
- Focus on library development to maximise impact
- Enables use of new hardware and provides greater flexibility in future procurements

DiRAC Software Innovation

MODAL XEON PHI MODERNIZATION (COSMOS IPCC)

- Multi-/many-core optimisation: 100-1000x speed-ups
 Enabling new science required significant RSE effort
- HPC publications; Xeon Phi course (EPCC); ISC'15 Lecture;
- Winner of HPCWire Readers' Choice award 2015

DiRAC Software Innovation

OSPRay XEON PHI Viz - collaboration between COSMOS IPCC and Intel

Demonstrator of remote visualisation on Xeon Phi

Software Innovation - AI on HPC

- Demonstration of factor 10 speed-up in the Baidu Research optimised reduction code
 - a publicly available code designed to optimise the performance limiting steps in distributed machine learning
- potentially disruptive implications for design of cloud systems
 - shows that ML workflows can achieve 10x performance improvement when fully optimised and implemented on traditional HPC architectures

DiRAC Training

- DiRAC provides *access* to training from wide pool of providers
- Currently offering:
 - DiRAC Driving Test: now available online (and compulsory!)
 - Workshops: Many-Core programming; Software Design & Optimisation; MPI programming
- Under development:
 - Domain-specific workshops
 - Online individual training portal
 - Industry-focussed training pathways

Why do we do this?

- maximise DiRAC science output
- flexibility to adopt most cost-effective technologies
- future-proofing our software and skills
- contributes to increasing skills of wider UK economy

Conclusions

- Goal is to maximise the science you can do on DiRAC
- Research software engineering is increasingly important
- DiRAC provides access to training and RSE effort from wide pool of providers
- Do engage with these opportunities:
 - Greater flexibility in future procurements means DiRAC-3 can be more powerful and productive for your science
- Tell us if we have missed something: dirac.ac.uk

mark.wilkinson@leicester.ac.uk