
User Guide for N-MODY: a parallel code for

collisionless N-body simulations in modified

Newtonian dynamics.

Pasquale Londrillo1 and Carlo Nipoti2∗

1INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy
2Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy

January 11, 2008

Contents

1 Overview 2

1.1 The code procedures . 2

1.2 Parallelization . 2

2 A MOND potential solver in spherical coordinates 3

2.1 The computational grid . 4

2.2 A Newton-like relaxation procedure . 4

2.3 Implementation of the relaxation procedure. 5

2.4 Performances . 6

3 Particle-Mesh scheme in spherical grids 7

3.1 Assignment of mass density . 7

3.2 Interpolation of grid acceleration . 7

3.3 Leap-frog particles time-stepping . 8

4 Compiling and running N-MODY 8

4.1 Source files . 9

4.2 Code units . 9

4.3 Input data . 9

4.3.1 Simulation parameters . 9

4.3.2 Particle data . 11

4.4 Output data . 12

∗E-mail: pasquale.londrillo@oabo.inaf.it, carlo.nipoti@unibo.it

1

1 Overview

Modified Newtonian dynamics (MOND) is a non-linear alternative gravity theory, originally pro-

posed by Milgrom (1983) and Bekenstein & Milgrom (1984) to explain the observed kinematics of

galaxies without dark matter. While most N-body codes for simulations of collisionless systems

in Newtonian gravity are based on the gridless multipole expansion treecode scheme (Barnes &

Hut 1986; see also Dehnen 2002), the non-linearity of the MOND field equation forces one to re-

sort to other methods, such as the particle-mesh technique (see Hockney & Eastwood 1988). In

this approach, particles are moved under the action of a gravitational field computed on a grid,

with particle-mesh interpolation providing the link between the two representations. N-MODY

is a parallel, three-dimensional particle-mesh code to run N-body simulations of collisionless

systems in MOND. Note that the potential solver of N-MODY is based on a grid in spherical

coordinates, so periodic boundary conditions are not implemented, and the code is best suited

for simulation of isolated galaxies. The code and the potential solver have been presented and

tested in Ciotti, Nipoti, Londrillo (2006) and Nipoti et al. (2007abc).

1.1 The code procedures

N-MODY implements a particle-mesh scheme in spherical coordinates, following these main

computational steps:

1) for a given distribution N-particle, a grid-based density field is reconstructed by mass

deposition using linear or quadratic shape functions. Particles are represented by a six-

component array (xi,vi) of positions and velocities in Cartesian components.

2) For a given density field, the MOND grid-based acceleration and potential fields are then

computed. As an alternative, the code also provides a fast Newtonian solver.

3) To move Lagrangian particles, the acceleration spherical components are first interpo-

lated using the same linear or quadratic shape function at each particle position and then

transformed to Cartesian vector components.

4) Finally, particle positions and velocities are advanced in time using a leap-frog scheme.

An explicit, three-stage fourth-order leap-frog scheme is also implemented.

1.2 Parallelization

In N-MODY, steps 1) and 3) can be executed in parallel using MPI routines. To that purpose,

particles are uniformly distributed among the processors (PEs) following the sequential ordering

provided by their initial memory addresses and then never exchanged among different PEs.

This simple strategy assures a full efficiency in parallel execution, but entails more memory

resources than in a standard domain decomposition. In fact, grid data computed on the overall

computational domain must now be at disposal of each PE at each time step for particles

interpolation and move. It is then a viable parallelization strategy only for reasonable grid size

and for sufficiently high particles number per grid cell, in a way that the CPU time spent for

particles move and interpolation is dominant or at least comparable to the time needed for grid

based computations.

2

Step 2) is only partially parallelized, following a specific procedure detailed below. This

part, containing the MOND potential solver, represents a new contribution to the fast numerical

solution of a non-linear elliptic equation, and will be considered first in the following section.

2 A MOND potential solver in spherical coordinates

N-MODY solves the non-relativistic field equation (Bekenstein & Milgrom 1984)

∇ ·
[

µ

(

g

a0

)

∇φ(x)

]

= 4πGρ(x), (1)

where φ(x) is the gravitational potential produced by the density distribution ρ(x), g(x) =

|g(x)|, with g(x) = −∇φ(x)) and a0 is the MOND acceleration parameter. The MOND inter-

polating function µ(y) is a monotonic function such that

µ(y) ∼
{

y for y ≪ 1,

1 for y ≫ 1.
(2)

In the present version of N-MODY we adopt

µ(y) =
y

√

1 + y2
, (3)

but it is clear that a trivial modification of the code allows to implement any other continuous

function µ with the required asymptotic behaviour1.

Alternatively, the user of N-MODY can also choose to simulate a Newtonian system, in

which case the Poisson equation is solved instead of equation (1), or a system in the so-called

‘deep MOND regime’, i.e. obeying the equation

∇ · (‖∇φ‖∇φ) = 4πGa0ρ. (4)

We consider only systems of finite mass

M =

∫

ρ(x) d3x, (5)

for which the boundary conditions of equation (1) are given by the asymptotic behaviour ∇φ →
O(1/r) for r ≡ ‖x‖ → ∞.

To solve numerically the MOND field equation it is then necessary:

1. to discretize a sufficiently large computational domain, in a way the asymptotic boundary

condition can be represented with reasonable accuracy;

2. to use a relaxation method to solve the non–linear elliptic equation (1).

1In versions of MOND based on Bekenstein’s (2004) covariant theory TeVeS, there is a scalar field φs obeying

equation (1), but with an unbounded interpolating function µs intstead of the bounded fuction µ. We verified

that our code can be adapted to solve for φs (see Famaey et al. 2007).

3

2.1 The computational grid

To accomplish task 1), N-MODY uses a spherical grid (r, ϑ, ϕ) with radial coordinate represented

by the invertible mapping on the angular ξ coordinate, 0 ≤ ξ < π/2,

r(ξ) = L tanα ξ, r′(ξ) =
αL tanα−1 ξ

cos2 ξ
, (6)

where the mapping index α = 1 or α = 2 and the scale length L are user provided parameters. In

this representation, any unbounded radial range is mapped onto the finite open interval [0, π/2).

The radial derivative is then expressed as

∂

∂r
=

1

r′(ξ)

∂

∂ξ
. (7)

The ξ coordinate is discretized into the uniform grid

ξi = (i + 1/2)∆ξ, ∆ξ =
π

2Nr
, i = 0, 1, ..,Nr , (8)

so the corresponding discretized radial variable ri = r(ξi) avoids the r = 0 and 1/r = 0 singular

points. The other coordinates (ϑ,ϕ) are discretized in the uniform grids

ϑj = (j + 1/2)∆ϑ, ∆ϑ = π/Nϑ, j = 0, 1, ..,Nϑ − 1 (9)

to avoid the ϑ = 0, π singular points, and

ϕk = k∆ϕ, ∆ϕ = 2π/Nϕ, k = 0, 1, ..,Nϕ − 1 (10)

Finally, using these uniform discretizations, the corresponding (ξ, ϑ, ϕ) numerical derivatives

are computed by second-order or fourth-order finite difference central schemes.

2.2 A Newton-like relaxation procedure

To solve the non–linear MOND elliptic problem given by the functional equation

M̂ [φ(x)] ≡ ∇ ·
[

µ

(

g

a0

)

∇φ(x)

]

− 4πGρ(x) = 0, g = O(r−1) for r → ∞, (11)

where ρ(x) is assigned and x = (r, ϑ, ϕ), N-MODY implements a Newton iterative procedure.

Starting with an approximate guess solution φ(0) having the required asymptotic behaviour, a

sequence of linear problems

R̂(n)δφ(n) = −M̂
[

φ(n)
]

, n = 0, 1, ... (12)

is then solved for the increments δφ(n) = φ(n+1) − φ(n), each φ(n) provisional solution having

the same asymptotic behaviour as the initial guess φ(0). Here the choice of the relaxation linear

operator R̂(n) is based on the requirement that it must assure convergence in the maximum

norm ‖.‖
∥

∥

∥δφ(n)
∥

∥

∥ =

∥

∥

∥

∥

[

R̂(n)
]−1

M̂
[

φ(n)
]

∥

∥

∥

∥

≤
∥

∥

∥δφ(n−1)
∥

∥

∥ , n = 1, 2, (13)

and it must be easy to invert. In a classical Newton method, one would use R̂(n) = δM̂ (n),

δM̂ (n)
[

δφ(n)
]

= M̂
[

φ(n+1)
]

− M̂
[

φ(n)
]

+ O
[

(δφ(n))2
]

, (14)

4

which in the case of equation (1) takes the form:

δM̂ (n) = µ(n)∇2 + δM̂
(n)
1 (15)

where

δM̂
(n)
1 = (∇µ(n)) · ∇ + ∇ ·

[

µ′(n)g(n)
(

g(n) · ∇
)]

(16)

and µ′(n) ≡ µ′
(

g(n)/a0

)

/g(n)a0. Boundedness of the inverse of the operator δM̂ (n) assures

quadratic convergence of the scheme for φ(0) sufficiently close to the sought solution (e.g. Stoer

& Bulirsch 1980). Unfortunately, [δM̂ (n)]−1 is difficult to compute, so we discretize the simpler

linear relaxation operator

R̂(n) = ωµ(n)∇2, (17)

where ω > 1 is an empirical relaxation parameter. As an approximation of the Newton relax-

ation operator δM̂ , this choice assures a lower convergence rate, but has clear computational

advantages. Using equation (12) and the identity

M̂(φ(n)) = δM̂ (n−1)
[

δφ(n−1)
]

+ M̂
[

φ(n−1)
]

+ O
[

(δφ(n−1))2
]

, (18)

it follows that the condition for convergence (13) requires
∥

∥

∥

∥

∥

(∇2)−1δM̂ (n−1)

ωµ(n)
− µ(n−1)

µ(n)
I

∥

∥

∥

∥

∥

< 1. (19)

2.3 Implementation of the relaxation procedure.

N-MODY then solves the sequence of Poisson equations:

∇2δφ(n) = Sn (20)

with source term given by

Sn = − 1

ωµ(n)
M̂

[

φ(n)
]

(21)

In spherical coordinates, the Laplacian operator has the form

∇2 ≡ 1

r2

[

∂

∂r

(

r2 ∂

∂r

)

+ L̂ϑ + L̂ϕ

]

, (22)

where

L̂ϑ ≡ 1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

, L̂ϕ ≡ 1

sin2 ϑ

∂2

∂ϕ2
. (23)

After expanding the source term Sn(r, ϑ, ϕ) and the unknown function δφ(n)(r, ϑ, ϕ) in spher-

ical harmonics (or Fourier-Legendre) components

δφ(n)(r, ϑ, ϕ) =
∑

l,m

δφ
(n)
l,m(r)Y m

l (ϑ,ϕ) (24)

equation (20) takes the simple form

1

r

[

∂

∂r

(

r2 ∂

∂r

)

− l(l + 1)

]

δφ
(n)
l,m(r) = rS(n)

l,m(r), (25)

where we multiplied both sides by r to avoid the singularity in the source term for the astro-

physically relevant case of ρ ∼ r−1 central density profiles. Equation (25), involving derivatives

only in the radial coordinates, is discretized by central finite differences.

The relaxation scheme in N-MODY is implemented in the following steps:

5

1. For assigned density ρ(r, ϑ, ϕ) the initial guess solution is chosen to be the exact spherical

symmetric MOND solution corresponding to the angle-averaged density distribution:

ρ0,0(r) =
1

4π

∫ 2π

0

∫ π

0
ρ(r, ϑ, ϕ) sin(ϑ) dϑ dϕ. (26)

This solution satisfies the boundary condition, providing the values of the potential φ(0)

and of the radial acceleration g
(0)
r at the boundary grid point rNr

. In N-body time evolving

systems, this choice holds only for the initial time t = 0 solution. At subsequent time steps,

the initial guess solution will be provided by the numerical solution found in the previous

time step.

2. For assigned acceleration g(n)(r, ϑ, ϕ) at the iteration level n = 0, 1, .., the source term

rS(n)(r, ϑ, ϕ) is evaluated, using central finite differences to approximate space derivatives

in all the coordinate variables.

3. The source term is then transformed into Fourier-Legendre components by:

Sl,m(ri) =
∑

j

∑

k

S(ri, ϑj , ϕk)e
−imϕkP−1

l,m(ϑj) (27)

where P−1
l,m(ϑk) are the exact inverse of the associated Legendre polynomials, with unit

normalization
∑

j Pl,m(ϑj)P
−1
l′,m(ϑj) = δl,l′ .

4. The operator in equation (25) is discretized in the radial coordinate by using finite differ-

ences for first and second derivatives. It results a tri-diagonal or penta-diagonal matrix of

order Nr +1 that can be easily inverted by using a standard Lower-Upper triangular (LU)

decomposition, to solve for the δφ
(n)
l,m variables with boundary conditions δφ

(n)
l,m(rNr

) = 0.

5. Finally, the potential increments δφ
(n)
l,m(ri) are back transformed into the (ϑ,ϕ) coordi-

nate space and the corresponding acceleration increments δg(n) are evaluated using finite

differences, to move to the next level solution

g(n+1) = g(n) + δg(n) (28)

until convergence is achieved. We notice that in this relaxation scheme the potential

is never used for intermediate solutions, only the potential increments being required.

The final acceleration field still remains a potential gradient because the initial guess and

all the intermediate solutions keep the irrotational form. The final potential field can

be computed (when needed for outputs) from the final acceleration field by numerical

inversion of ∇φ = g.

6. To evaluate convergence, N-MODY adopts the maximum and r.m.s. norms to check for

the error condition in the relative acceleration increment Err ≡ ‖δg/g‖ < ε, where ε is a

user defined tolerance parameter.

2.4 Performances

By choosing a tolerance parameter ε = 10−3 for convergence in maximum norm (corresponding

to a ≃ 10−4 value in r.m.s. norm), with a relaxation parameter ω−1 = 0.3 − 0.5, the N-MODY

6

solver provides the required solution in a few 5−10 iterations. For typical N-body systems, these

error bounds correspond to an approximation in maximum norm of the M̂(φ) = 0 equation, of

max |M̂(φ)| ≃ 0.1 and r.m.s|M̂(φ)| ≃ 0.01.

Computational time needed in the MOND potential solver scales roughly with the total

number of grid points Ng = (Nr + 1)NϑNϕ. In fact, at the scalar level (only one PE used),

MOND solver needs a ≃ 10% of the time spent to run particles, in a typical configuration

where Np = 10Ng. For large grids, and lower number of particles per cell, some advantages

are obtained by parallelization of the MOND solver. To that purpose, when running with NPE

processors, N-MODY adopts a domain decomposition during the iteration cycle, by assigning

at each PE only a sector of the ϑ coordinate containing Nϑ/NPE grid points (note that the

condition NPE ≤ Nϑ/4 must be satisfied). This simple strategy results to be effective, even if

several operations still require the full grid, resulting in a 70% of parallelization rate.

3 Particle-Mesh scheme in spherical grids

For a given set of Np point particles with mass m = M/Np, the particles Cartesian positions

(xp, yp, zp), p = 1, 2..., Np are first converted into radial coordinates by:

rp =
√

x2
p + y2

p + z2
p , ξp = tan−1(rp/L)1/α, (29)

ϑp = cos−1(zp/rp), ϕp = tan−1(yp/xp). (30)

3.1 Assignment of mass density

For mass deposition on the radial grid, using linear or quadratic shape functions S(u − up) of

compact support for each u coordinate, the resulting mass density at the grid point of indices

(i, j, k) is defined by

Di,j,k = m
∑

p

[S(ξi − ξp)S(ϑj − ϑp)S(ϕk − ϕp)] (31)

the sum extending only at the particle positions where the shape function is non zero. Here

Di,j,k ≡
[

ρr2r′ sin ϑ∆ξ∆ϑ∆ϕ
]

i,j,k
(32)

and then, since the mass assignment scheme is conservative,

∑

i,j,k

Di,j,k = mNp = M. (33)

3.2 Interpolation of grid acceleration

The inverse operation to assign the grid defined acceleration components to each particle is

performed along similar lines, where now the same linear or quadratic shape functions act as

interpolating functions. To improve momentum conservation, interpolation on particle position

xp is first computed on the potential derivatives components g̃ = (gr, rgϑ, r sin ϑgϕ)

g̃(xp) =
∑

i,j,k

g̃i,j,k [S(ξi − ξp)S(ϑj − ϑp)S(ϕk − ϕp)] (34)

7

and then the interpolated spherical components

[gr]p = [g̃r]p, [gϑ]p = [g̃ϑ/r]p, [gϕ]p = [g̃ϕ/r sin ϑ]p (35)

are combined to get the corresponding Cartesian components of the particle acceleration:

gx = [gR cos ϕ − gϕ sin ϕ]p, gy = [gR sin ϕ + gϕ cos ϕ]p, gz = [gr cos ϑ − gϑ sin ϑ]p, (36)

where

gR = gr sin ϑ + gϑ cos ϑ. (37)

3.3 Leap-frog particles time-stepping

N-MODY implements a standard leap-frog integration scheme of the form:

• half-step position move:

xp(t + ∆t/2) = xp(t) +
∆t

2
vp(t), (38)

• evaluation of the particles acceleration at the current time gp(t + ∆t/2)

• one-step velocity move:

vp(t + ∆t) = vp(t) + ∆tgp(t + ∆t/2) (39)

• followed by a second half-step position move:

xp(t + ∆t) = xp(t + ∆t/2) +
∆t

2
vp(t + ∆t), (40)

The implemented fourth order leap-frog scheme is obtained by cycling three times this basic

scheme with time step ∆t replaced by (c1, c2, c1)∆t respectively, where c1 = 1/(2 − 21/3) and

c2 = 1 − 2c1.

4 Compiling and running N-MODY

The N-MODY code, written in FORTRAN90, is organized in package containing a directory

n mody and three subdirectories: src (containing the .f90 source files described in Section 4.1

and template makefiles), run (containing the parameter file input.data), and example init

(containing source and parameter files to generate examples of initial conditions).

In the directory src, the makefile generates the executable rmond and with the command

make mvexec moves the executable in the subdirectory run, where data inputs and outputs are

planned to reside.

A scalar version of N-MODY (not using the MPI library) can be obtaiend by substituing

mond prll with mond scalar in the makefile.

8

4.1 Source files

N-MODY has seven .f90 source files residing in the src subdirectory:

1. “ftnrmod.f90” contains routines to execute Fast Fourier Transforms (FFTs). Includes

the subroutine four1 of Press et al. (1997). This routine can be substituted by any

user-defined FFT routine.

2. “mond prll.f90” contains interfaces to the MPI library for handling communications

among PEs. These routines are then called in all other parts of the code without any

reference to MPI definitions.

3. “mond scalar.f90” subtitutes mond prll.f90 in the scalar version of the code, not using

the MPI library.

4. “mond lib.f90” contains all the relevant routines implementing the MOND (or Newto-

nian) potential solver.

5. “nbd lib.f90” contains all the relevant routines implementing particle-grid operations,

i.e. mass deposition and fields interpolation.

6. “mond iout.f90” contains the relevant routines for input-output operations, both on grid-

based fields and particles.

7. “nbd mond main.f90” contains start-up routines and the routines driving input-output

and all other procedures for time evolution. Console information on the running process

is always collected in the fort.99 file.

4.2 Code units

In the code we use gravitational constant G = 1. Thus, the code time, velocity and acceleration

units are

tu ≃ 4.7 × 106
(

lu
kpc

)3/2 (

Mu

1010M⊙

)−1/2

yr (41)

vu ≃ 207.4

(

Mu

1010M⊙

)1/2 (

lu
kpc

)−1/2

km s−1 (42)

au ≃ 1.39 × 10−9
(

Mu

1010M⊙

) (

lu
kpc

)−2

m s−2, (43)

where Mu and lu are the the code mass and length units. All the input/output parameters are

in these units. In particular, we note that in MOND simulations a0 must be specified in units

of au. See Nipoti et al (2007a) for a detailed discussion of the scaling of MOND simulations.

4.3 Input data

4.3.1 Simulation parameters

The already included run/input.data contains the following user defined control and structure

parameters:

nr: Is the number of radial grid points Nr.

9

nth: Is the number of ϑ grid points Nϑ. We recall that when running in parallel with NPE

processors, the condition Nϑ ≥ 4NPE must be satisfied.

nph: Is the number of ϕ grid points Nϕ.

lmax: Is the maximum value of Legendre mode l. Typically, lmax = nth/2

model: model = 0 for N-body simulations. model > 0 for static models [model = 1: Hernquist

(1990) sphere; model = 2: Miyamoto & Nagai (1975) disk].

mond ind: Is the gravity parameter. mond ind=0 for Newtonian gravity; mond ind=1 for MOND

gravity (equation 1); mond ind=2 for deep-MOND gravity (equation 4);

spl order: Order of the interpolation. spl order=1 linear; spl order=2 quadratic.

rmap: Determines the value of α = 1 or α = 2 in the radial grid mapping (equation 6).

a0: The value of the acceleration parameter a0 in code units: a0 = a0/au. We recall that

the code uses G = 1 (see Section 4.2)

dt iter: Determines the relaxation parameter ω−1 = dt iter (see equation 17). Typical

values are dt iter = 0.3 − 0.5

scale: Is the value of the scale length L (equation 6) in code units. Typically, L is of the

order of the half mass radius of the distribution.

iter max: Maximum number of iteration in the Newton-relaxation procedure. If convergence is

not reached after iter max iterations a warning message is given in fort.99.

tol: Determines the value of the tolerance parameter ε = tol/104 (see Section 2.3).

new: To read new particle data (new=0) or to restart an evolved simulation (new=1)

id new: Input/output files have names moutXX.bin, where XX=00,...,99. id new provides the

XX integer value to identify the input file.

nout: The total number of consecutive outputs in a run. Output data are written in

moutXX.bin, poutXX.bin, mondXX.bin, diagXX.dat files, for

XX=id new+1,...,id new+nouts (see Section 4.4).

iene: Data related to conservation laws are computed and stored iene+1 times. These data

are finally written in the ASCII file diagXX.dat (see Section 4.4).

mrate: If mrate > 0, CPU-timing of the main computational steps are documented in the

fort.99 output file at the rate of mrate time steps.

tmax: Time length of the simulation in units of the code time unit tu. If tmax = 0, only

one-step force evaluation with some diagnostics on the main computational steps is

performed.

dt min: Minimum time step in units of the code time unit tu. If the dynamically computed

timestep is shorter than dt min, dt min is used as timestep and a warning message

is given in fort.99 standard output.

cfl: Dimensionless control parameter for time step evaluation. The code uses the leap-frog

stability threshold ∆t = cfl/
√

max |∇ · g|, and the maximum is evaluated over the

grid points. Typical value is cfl = 0.3

lp ord: Order of the leapfrog scheme (lp ord=2 or lp ord=4).

10

4.3.2 Particle data

Data on position and velocity of the initial particle distribution are user provided on the input

file /run/moutXX.bin, where XX=00,...,99 is an integer parameter. The initial file index XX is

read as id new on input.data file.

The same file name, with consecutive index values (the code internal iout variable), is then

used also for outputs. In moutXX.bin data are stored in binary format, and are read as follows

(see mond iout.f90 module and example init for more details)

read(),ipar(1:5)

read(),rpar(1:5)

do k=1,nbd tot

read(),pd(k)%posvel(1:6)

end do

The parameters ipar(1:5) are integer numbers specifying:

ipar(1): Total number of particles nbd tot = Np.

ipar(2): Model.

ipar(3): mond ind. Just for reference. The value of mond ind is determined in input.data.

ipar(4:5): Unused.

The parameters rpar(1:5) are (4 byte) real numbers specifying:

rpar(1): Total mass M in code units.

rpar(2): = tnow: the current time in units of tu. (tnow = 0 for initial conditions).

rpar(3): = tdyn: an estimated dynamical time (in units of tu) related to the initial mass

distribution. Just for reference, not used by the code!

rpar(4:5): Unused

The quantities pd(k)%posvel(1:6), where k=1,Np is the particle index, are (4 byte) arrays

storing

pd(k)%posvel(1): particle x position

pd(k)%posvel(2): particle y position

pd(k)%posvel(3): particle z position

pd(k)%posvel(4): particle x velocity component

pd(k)%posvel(5): particle y velocity component

pd(k)%posvel(6): particle z velocity component

An example .f90 scalar code generating initial conditions is provided in the example init

subdirectory. In that directory, containing also a template makefile, the command make gener-

ates the executable rungb, which creates an input file mout00.bin according to the input param-

eters in newgalaxy.data. rungb generates Newtonian-equilibrium spherical γ-models (Dehnen

1993; Tremaine et al. 1994) with Osipkov-Merritt (Osipkov 1979; Merritt 1985) distribution

function.

11

4.4 Output data

On output, the code provides the following files of data: moutXX.bin, poutXX.bin, mondXX.bin,

diagXX.dat. Other run-time messages on initial condition parameters, allocated memory, fa-

tal errors and control diagnostics are reported in the console output file fort.99. Here we

summarize the content of the output files:

• moutXX.bin: in binary format, storing particle positions and velocities as explained in

Section 4.3.2.

• poutXX.bin: in binary format, storing particle potential. poutXX.bin is written as follows:

write()ipar(1:5)

write()rpar(1:5)

do k=1,nbd tot

write()pot(k)

end do

The (positive) potential of the k-th particle is stored in the (4 byte) real number pot(k).

The potential additive constant is such that the potential is zero at the boundary rNr
.

• mondXX.bin: in binary format, storing grid data. mondXX.bin is written as follows:

write()nfields,nr,nth,nph,nph2,lmax,iter max,rmap,mond ind,spl ord ! integer num-

bers

write()tnow,a0,scale,rh ! (4 byte) real numbers

write()rad(1:nr+1) ! (4 byte) real array

write()th(1:nth) ! (4 byte) real array

write()ph(1:nph2) ! (4 byte) real array

write()den ! (4 byte) real array den(1:nr+1,1:nth,1:nph2)

write()pot ! (4 byte) real array pot(1:nr+1,1:nth,1:nph2)

write()gr ! (4 byte) real array gr(1:nr+1,1:nth,1:nph2)

write()gth ! (4 byte) real array gth(1:nr+1,1:nth,1:nph2)

write()gph ! (4 byte) real array gph(1:nr+1,1:nth,1:nph2)

nfields=5 is the number of fields stored; nph2=nph (if nph > 4) or nph2=1 (if nph ≤ 4);

rh is the half mass radius of the distribution; rad, th and ph are the discretized r, ϑ, ϕ

coordinates; pot, den, gr, gth, gph are the density, potential, and acceleration components.

• diagXX.dat: in ASCII format, for diagnostics on conservation laws. It contains values of

the following quantities computed for a total number of k=1,2,..,iene+1 steps:

Time: Current time

Eint: Absolute value of the trace of the Chandrasekhar potential energy tensor W =

−
∫

ρ(x)x · ∇φd3x

Epot: Absolute value of the total potential energy Epot = 1
2

∫

ρ(x)φd3x

Ekin: Total kinetic energy K.

12

Enf: Field energy Efield =
∫ a2

0

8πGF
(

||∇φ||
a0

)

d3x, where F(y) ≡ 2
∫ y
y0

µ(ξ)ξdξ

D max: Maximum density

R h: Half mass radius

Ek r: Radial kinetic energy

Ek th: Tangential (ϑ) kinetic energy

Ek ph: Tangential (ϕ) kinetic energy

P x: x linear momentum component

P y: y linear momentum component

P z: z linear momentum component

L x: x angular momentum component

L y: y angular momentum component

L z: z angular momentum component

T xx: xx inertia tensor component

T yy: yy inertia tensor component

T zz: zz inertia tensor component

T xy: xy inertia tensor component

T xz: xz inertia tensor component

T yz: yz inertia tensor component

We recall that energy is conserved in MOND, though the total energy is infinite even for finite

mass systems (Bekenstein & Milgrom 1984), so the verification of total energy conservation is

not trivial. We refer to Nipoti, Londrillo & Ciotti (2007a) for a detailed discussion of energy

conservation in the code. Here we just note that in MOND the quantities K + W and K + Epot

are not conserved (and are not the total energy). However, W is conserved in deep-MOND

regime (W = −(2/3)
√

Ga0M3 for all systems of finite total mass M ; see Nipoti et al. 2007a).

References

[1] Barnes J.E., Hut P., 1986, Nature, 324, 446

[2] Bekenstein J. 2004, Phys. Rev. D, 70, 083509

[3] Bekenstein J., Milgrom, M. 1984, ApJ, 286, 7

[4] Ciotti, L., Londrillo, P., & Nipoti, C. 2006, ApJ, 640, 741

[5] Dehnen W., 1993, MNRAS, 265, 250

[6] Dehnen, W. 2002, Journal of Computational Physics, 179, 27

[7] Famaey B., Gentile G., Bruneton J., Zhao H., 2007, Phys. Rev. D, 75, 063002

[8] Hernquist L., 1990, ApJ, 356, 359

[9] Hockney R., Eastwood J. 1988, Computer Simulation Using Particles (Bristol: Hilger)

13

[10] Merritt D., 1985, AJ, 90, 102

[11] Milgrom, M. 1983, ApJ, 270, 365

[12] Miyamoto M., Nagai R., 1975, PASJ, 27, 533

[13] Nipoti C., Londrillo P., Ciotti L., 2007a, ApJ, 660, 256

[14] Nipoti C., Londrillo P., Zhao H.S., Ciotti L., 2007b, MNRAS, 379, 597

[15] Nipoti C., Londrillo P., Ciotti L., 2007c, MNRAS, 381, L104

[16] Osipkov L.P., 1979, Soviet Astron. Lett., 5, 42

[17] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 1997, “Numerical Recipes:

The Art of Parallel Scientific Computing”, Cambridge University Press

[18] Stoer J., Bulirsch R., 1980, Introduction to Numerical Analysis (New York: Springer-

Verlag)

[19] Tremaine S., Richstone D.O., Yong-Ik B., Dressler A., Faber S.M., Grillmair C., Kormendy

J., Laurer T.R., 1994, AJ, 107, 634

14

