
by

Nick Gnedin and IFrIT

IFrIT Version 4.1.1

Ifrits in common mythology are jinn spirits that embody fire. They consider themselves superior to all
races because they supposedly "came first," and they resent deeply that humans have found magical

ways to take control over them.
Even when tasked, they show an ironic and malicious attitude, tending to subvert their masters' orders

every time they can.

(Wikipedia.org)

Table of Contents
1 User Guide..1

1.1 Overview..1
1.1.1 What can IFrIT do?..1
1.1.2 General Structure of IFrIT..2
1.1.3 Objects and Properties..2
1.1.4 Objects and Data..4

1.2 Running IFrIT..4
1.2.1 Starting and controlling IFrIT..4
1.2.2 Mouse and Keyboard Controls...6
1.2.3 Environment Variables...7
1.2.4 Command-line Options..8
1.2.5 State File...8

1.3 File Formats...8
1.3.1 Overview..8
1.3.2 Built-in Scalars Data..10
1.3.3 Built-in Vectors Data..11
1.3.4 Built-in Tensors Data...11
1.3.5 Built-in Particles Data..11

1.4 IFrIT Palettes...12
1.4.1 Built-in Palettes..12

1.5 Animation Support...13
1.5.1 Animation Mode...13
1.5.2 Animatable Files...14
1.5.3 Running Animator..14

2 Shell Reference...16
2.1 GUI Shell Reference..16

2.1.1 Graphical User Interface (GUI) Shell..16
2.1.2 Script Window..17
2.1.3 Palette Editor..17
2.1.4 Data Explorer...18
2.1.5 File Set Explorer...18
2.1.6 Image Composer...19
2.1.7 Picker Window...19
2.1.8 Parallel Controller..20
2.1.9 ART File Options...20
2.1.10 ART Cosmology Warning..21
2.1.11 ART Mesh Explorer...21

2.2 Non-GUI Shell Reference..21
2.2.1 Command-line Shell...21
2.2.2 Off-screen Shell..22

3 Object Reference..23
3.1 Overview..23

3.1.1 Objects and Properties..23
3.1.2 Object Hierarchy..24

3.2 Regular (Non-Data) Objects..26
3.2.1 ARTMesh object ...26
3.2.2 Animator object..27
3.2.3 BoundingBox object...29

i

Table of Contents
3 Object Reference

3.2.4 Camera object...29
3.2.5 ClipPlane object...31
3.2.6 ColorBar object..31
3.2.7 CrossSection object..32
3.2.8 Data object..34
3.2.9 DataReader object..35
3.2.10 ImageComposer object...36
3.2.11 ImageWriter object...39
3.2.12 Label object..40
3.2.13 Lights object...41
3.2.14 Marker object...42
3.2.15 Material object..43
3.2.16 MeasuringBox object...44
3.2.17 Palette object..44
3.2.18 Particles object...45
3.2.19 Picker object...48
3.2.20 Ruler object..48
3.2.21 Surface object...49
3.2.22 TensorField object..51
3.2.23 VectorField object..53
3.2.24 Volume object..55
3.2.25 Window object...57
3.2.26 ifrit object...61

3.3 Data Objects...62
3.3.1 ARTBlackHoleParticles data object..62
3.3.2 ARTEddingtonTensorField data object...64
3.3.3 ARTParticles data object...64
3.3.4 ARTStellarParticles data object ..66
3.3.5 ARTVariables data object ...68
3.3.6 ARTVelocityField data object...69
3.3.7 GADGETBoundaryParticles data object...70
3.3.8 GADGETBulgeParticles data object...72
3.3.9 GADGETDiskParticles data object...73
3.3.10 GADGETGasParticles data object ..75
3.3.11 GADGETHaloParticles data object...77
3.3.12 GADGETStellarParticles data object..78
3.3.13 NativeVTKPolyData data object...80
3.3.14 NativeVTKScalars data object ..81
3.3.15 NativeVTKTensors data object ...82
3.3.16 NativeVTKVectors data object ...82
3.3.17 Particles data object..83
3.3.18 Scalars data object..85
3.3.19 Tensors data object...86
3.3.20 Vectors data object...87

A Appendices...88
A.1 Codes For Writing IFrIT Data Files..88

A.1.1 Code Examples..88
A.1.2 Fortran...88

ii

Table of Contents
A Appendices

A.1.3 C..90
A.1.4 IDL..94

A.2 License Agreement...96
A.2.1 Overview...96
A.2.2 GNU General Public License..96
A.2.3 ART Extension License...100

iii

1 User Guide

1.1 Overview

1.1.1 What can IFrIT do?

IFrIT can visualize four different classes of data:

Scalar data: several scalar variables in 3D space.•
Vector field data: a 3D field of vectors.•
Tensor field data: a symmetric 3x3 tensor in 3D space.•
Particle data: a set of particles (points) with several optional variables (numbers that distinguish
particles from each other) per particle.

•

For the scalar data the following visualization objects are available:

A two-dimensional surface (either an isosurface of a given variable, or a fixed geometric surface: a
plane or a sphere). Several instances (copies) of each surface may co-exist (for example, isosurfaces
at different levels of the same variable). Surfaces can be colored on the outside or inside by a value of
another scalar variable, translated into color through a palette.

•

An orthogonal cross section of a data cube, again several of them can be shown at a time.•
Volume rendering of one scalar variable.•

The vector field data can be represented either as

a "vector glyph" - a line that starts at each mesh point, points in the direction of the vector, and has a
length proportional to the vector magnitude (sorry, no arrows in 3D), or

•

a set of streamlines - lines along which the fluid would flow if the vector field is assumed to be a
velocity field of some imaginary fluid. Streamlines can be colored by vector field properties (like
magnitude, vorticity, etc), or by scalar variables, if the scalar data are loaded and have the same
dimensions as the vector field. Streamlines also can be represented as tubes, with the tube diameter
inversely proportional to the vector magnitude, or by ribbons with two neighborning streamlines
being the ribbon boundaries.

•

The tensor field data are hard to visualize. At the moment, the only supported visualization mode is the
"tensor glyphs" - ellipsiods with orientation and dimensions proportional to three tensor eigenvalues, placed at
some of the vertices of the uniform mesh.

The particle data can be split into individual groups, and particles in each group can have various
representations (dots, spheres, clouds of dots, etc), can be colored by the value of one of the variables, and can
be sized with an arbittary sizing function by the value of another variable. Particles belonging to one group
can be connected by a line - this is useful for, say, plotting trajectories.

© 2005-2012 by Nick Gnedin 1

Different modes of visualization are coexistent, they are activated/de-activated independently of each other.
Several visualization windows can exist at the same time, each one having a full set of visualization objects.
Some visualization windows can share the data between them, while other windows can be fully independent.
Images from several visualization windows can be combined into one image file on the disk, tiling some
windows together, and inserting reduced versions of some windows into larger other windows.

A large array of nifty features is also available, including highly advanced animation capabilities, a complex
set of lights, markers to label various points in space, a capability to "pick" a point in the scene and retrive
information about the data at this location, two scripting languages, etc.

1.1.2 General Structure of IFrIT

IFrIT consists of a set of components called Objects. Each object is designed to perform a certain function:
just like in a computer various components - a processor, memory, a video card, etc - are designed to perform
certain tasks. Various objects have diverse relations to each other: some objects are independent, while other
objects may belong to different objects. You can think of the general structure of IFrIT as a directory
hierarchy: objects may have "sub-objects" in them, these, in turn, may have "sub-sub-objects", etc.

When a user uses IFrIT, she/he interacts with various objects, causing them to perform various functions. The
actual way in which a user interacts with IFrIT depends on a specific shell used, and two different shells are
currently available. The simplest one is a Command-line Shell, that uses a command prompt to take typed
commands from the user and forward them to other objects. Because typing commands is slow, this shell is
only useful for driving IFrIT over a remote slow connection, when graphical user interface does not work
well. The primary shell to use is GUI (Graphical User Interface) - it provides a user with a fast way of
manipulating various objects via GUI elements (buttons, sliders, check boxes, etc).

Each invocation of the executable uses a specific shell, but more than one shell can be compiled into the
executable, so that different shells can be used without re-compiling IFrIT. A specific shell can be invoked
either by using Command-line Options, or if it specified as a default one. If the default shell is not specified,
and none is requested in the command line, and more than one shell is compiled into the code, the GUI shell
will be used. Only shells that have been compiled into IFrIT during the installation will be accessible, of
course.

1.1.3 Objects and Properties

The root of the object hierarchy is the ifrit object; it serves as a container to other objects and performs a few
other miscellaneous functions. The diagram below shows the hierarchy of various objects (the complete
hierarchy is shown in Object Reference):

1 User Guide 1.1.1 What can IFrIT do?

© 2005-2012 by Nick Gnedin 2

The ifrit object includes one or more Window objects. A Window object appears as an IFrIT visualization
window on the screen; it forms an independent part of IFrIT that has its own set of other (sub-)objects and,
often, its own data. Some of Window objects may share the data with another Window object - in that case
the owner of the data is called a "parent" Window object, and sharing Window objects are called "clones".
Irrespectively of whether a given Window object is a clone or a parent, it has a complete set of its own
(sub-)objects.

Window objects use other objects for various functions. For example, some objects are responsible for a
general setup of the visualization scene, such as lighting (Lights object), camera (Camera object), bounding
box (BoundingBox object), clipping plane(ClipPlane object), and various accessories (such as rulers, labels,
measuring boxes, etc).

Other objects perform operations on various components of the visualization scene. For example the Surface
object represents a two-dimensional surface within the visualization scene that samples the three-dimensional
scalar data (either as an isosurface of a particular scalar variable, or a specified geometric shape like a sphere
or a plane), while the Particles object represents a set of particles (points).

Yet another group of objects perform various functions that are not directly represented in the visualization
scene. For example, the DataReader object is responsible for loading data files into IFrIT, while the
Animator object creates animations of your visualization scene in a diverse variety of ways.

Several objects do not belong to one of the Window objects, but rather communicate with all of them. An
ImageComposer object is responsible for composing a snapshot or an animation image from several
windows. An array of Palette objects represents palettes used by IFrIT. The complete hierarchy of all objects
is presented in the Object Reference Guide.

All object are controlled by properties. You can think of a property as of a special variable: as soon as you
assign a new value to the variable, something happens. For example, if you assign a value true to the
property BoundingBox.Visible, the bounding box will appear in the visualization scene. Assign false to that
property, and the bounding box disappears.

Properties can be controlled in two ways. A GUI shell uses GUI elements (widgets) to directly set or get a
value of a property. Alternatively, a shell can use a scripting language and access object properties as script
variables. In a command-driven shell a script is a must - otherwise, IFrIT cannot be controlled; in a GUI shell

1 User Guide 1.1.3 Objects and Properties

© 2005-2012 by Nick Gnedin 3

a script is optional, but without a script animation capabilties will be rather limited. Currently only Python is
supported as IFrIT scripting language (the primitive script of IFrIT 3 is no longer supported), but other
languages may be added in the future (Python is popular, but it is kind of an overkill for animation scripting,
and its syntax is too restrictive for efficient access to object properties).

In addition to properties-variables, some objects also have methods (C++ users will find terminology
familiar) - script functions (rather than variables). For example, Window.CloneOf() method returns the index
of the parent window if this Window object is a clone of another one, or invalid index if it is not a clone.

On a command line a given object property is accessed in a way consistent with the currently used scripting
laguage syntax. Using Python as an example, the complete name of the property Visible of the object
BoundingBox that belongs to the first Window object is addressed as
ifrit.Window[0].BoundingBox.Visible. A BoundingBox belonging to the second window is accessed as
ifrit.Window[1].BoundingBox.Visible, etc. Of course, in Python one can always assign a name to any
object, so the assignment b = ifrit.Window[0].BoundingBox will let the user to access the property Visible
simply as b.Visible. Never-the-less, full object names can be very long! For example, the type of a screen
representation with which to display the particles that represent the built-in Particles data is fully referred to
as ifrit.Window[0].Particles["Particles"].Type - such names will strain the patience of even most hardcore
command-line afficionados.

In order to simplify naming objects and their properties, each object and property has a short form for its name
as long as a full name. In short form ifrit.Window[0].Particles["Particles"].Type becomes
ifrit.w[0].p["p"].t, which should satisfy even the strictest Linux guru.

1.1.4 Objects and Data

Six IFrIT objects do the actual visualizations: CrossSection, Surface, Volume, Particles, VectorField,
TensorField. Therefore, these objects need the data to visualize. In the standard edition of IFrIT each of
visualization objects uses just one type of data, but if extensions are installed, there may be more than one
type of data for each object to use. Visualization objects create separate copies of themselves to deal with each
type of data, hence all these data types can be configured and visualized independently. For example,
particles may be visualized by points with the built-in Particles data type (Particles.Type = 0), while
particles for the data type Native VTK Poly Data may be visualized with spheres (Particles.Type = 1). To
distinguish these two choices, the name of the data type is used to qualify the name of the property,
ifrit.Window[0].Particles["Particles"].Type = 0, but
ifrit.Window[0].Particles["NativeVTKPolyData"].Type = 1 (in short form these two properties would
appear as ifrit.w[0].p["p"].t and ifrit.w[0].p["vtkp"].t).

1.2 Running IFrIT

1.2.1 Starting and controlling IFrIT

The behaviour of IFrIT is determined by the shell it is starting in. Hence, specifying which shell you want to
use is very important. This is done on the command line: the first command ine argument serves as a shell
specification. Shell specifications, like all other command line options, begin with the dash (-) symbol.
Currently, the following shells are available:

1 User Guide 1.1.4 Objects and Data

© 2005-2012 by Nick Gnedin 4

-os: an off-screen shell, for running IFrIT in the background,•
-cl: a command-line shell,•
-qt: a GUI shell based on the Qt Graphical User Interface (http://www.qt-project.org) toolkit -
this is the primnary way of using IFrIT.

•

Only shells that have been compiled into IFrIT during the installation will be accessible. If you do not specify
the shell in the command line, a default shell will be used. The default shell is the first compiled-in shell from
the folowing order: qt, cl, os.

While there is just one way to run command-line and off-screen shells, a GUI shell can be used in two
different regimes, depending on the roles IFrIT and Python play in their relation to each other - one is the
master and another is a servant. Therefore, the GUI shell specification can be optionally appended with
"/embed" or "/exten" (so that the full specifications is -qt/embed or -qt/exten) to explicitly request an
embedding or extending mode. (Pythonians are familiar with the terminology of extending and embedding).

In the embedding mode IFrIT (a master) completely embeds and controls a Python interpreter (a servant) as its
intergral part - this behaviour is equivalent to IFrIT 3 mode of operation. No command line is available in the
console window, but a special Script Window provides a mini-IDE for the script, with a built-in editor,
execution environment, and, optionally, a simple debugger (the latter is available if the script provides
debugging hooks). This is the default mode for the GUI shell, as it provides the most control over the script
execution.

In the extending mode IFrIT executable is starting a Python interpreter, which, in turns, starts a shell - i.e.
Python becomes a master and IFrIT a servant. From the outside it appears as a Python command-line
interpreter with IFrIT imported automatically. The only restriction is that when IFrIT exits, the Python
interpreter exists as well. Extending mode is requested by appending the shell specification with
"/exten".Thus, in the extending mode the command-line is available even in the GUI shell (except on
Windows, where the console window is not automatically displayed by the operating system). This is the
default mode for the command-line shell, but in the GUI shell the Script Window is not available - it is very
cumbersome to run Python both as a master to IFrIT and as a servant to IFrIT which is itself a servant to the
main Python interpreter.

Finally, one more method of running IFrIT is possible. In the modular mode IFrIT is running as a true Python
module - i.e. you would start a Python interpreter, then call import ifrit to import the module, and then start
IFrIT by calling ifrit.start() to launch a default shell or ifrit.start(<shell>) to start a specific shell, where
<shell> is a Python string with the two-letter shell id ('cl' or 'qt'). IFrIT then starts in the extending mode, but it
does not own the Python interpreter and stopping IFrIT will not close Python. In the modular mode IFrIT can
either be stopped by exiting the main window in the GUI shell or by executing ifrit.stop() command in the
Python interpreter. After IFrIT was stopped, it can or cannot be started again, depending on exact setup - Qt4
and Qt5 have a bug that prevents restarting a Qt application after it was closed, so if IFrIt was compiled with
Qt4 or 5, and ran in the GUI mode, it could not be restarted again without restarting Python. This mode can be
thought of Python being a king and IFrIT is just one of numerous subjects that does not interfere with the life
of the king in any way but lives and dies as king commands.

The modular mode is available only when a shared library ifrit.so (ifrit.pyd on Windows) is compiled and
placed in a location where Python can find it - check the installation instructions for details.

IFrIT can also function without any scripting language in a GUI shell. However, without a script only the
built-in animation capabilities are available. The scripting language is, therefore, a useful tool to have around.
To use it with IFrIT, it, obviously, must be installed on your system. Both Python 2.7 and Python 3 should be
supported, but earlier versions may not work.

1 User Guide 1.2.1 Starting and controlling IFrIT

© 2005-2012 by Nick Gnedin 5

When IFrIT starts and while it is running, it can be controlled by several methods. The main method of
controlling IFrIT is by using a shell to manipulate various objects. In a command-line shell that is achieved by
issuing Python commands, like ifrit.Window[0].Camera.Roll(10) or ifrit.w[0].bb.t = 2, etc. In a GUI shell
the same commands are issued by manipulating various GUI widgets with a mouse.

In addition, IFrIT can be controlled by using

Mouse clicks and motions in the visualization window,•
Environment variables,•
Command-line options, and•
External files.•

1.2.2 Mouse and Keyboard Controls

IFrIT reaction to mouse clicks and movements depends on which of three major mouse interaction modes it is
in.

Display mode is the default mouse interaction mode. In this mode the following binding of mouse
and keyboard are available:

Left button: rotates the camera around its focal point by moving the mouse.
[Ctrl] key + Left button: rotates the camera around the Z-axis (axis perpendicular to
the screen).
Middle button: pans (moves in space) the camera.
Right button: zooms the scene in and out.
3 key: toggles into and out of stereo mode.
P key: performs a pick operation (i.e. selects a point in the scene the mouse cursor is
pointing to, and retrives information about the data at this location).
R key: resets the camera view along the current view direction.
S key: modifies the representation of all actors so that they are surfaces.
W key: modifies the representation of all actors so that they are wireframe.

•

Fly-by mode emulates flying an airplane through the current visualization scene.

Left button: moves forward.
Right button: moves backward.
[Shift] key: accelerator in mouse and key modes.
[Ctrl]+[Shift] keys: causes sidestep instead of steering.
+/- keys: increases/deacreases normal speed.

•

Measuring box mode becomes active when a measuring box is shown in the current visualization
window. The box can be used to measure sizes of different features in the scene.

Left button: rotates the measuring box around its origin.
Middle button: translates the measuring box in/out of screen.
Right button: translates the measuring box along scene axes.
A/Z keys: scales the measuring box down/up.

•

1 User Guide 1.2.2 Mouse and Keyboard Controls

© 2005-2012 by Nick Gnedin 6

S/X keys: adjusts box opacity.
C key: shifts the camera focal point to the box center.

Keyboard Interactor mode uses keyboard to emulate all mouse interactions. The keyboard mode is
slow, but precise and reproducible. In this mode the following keys are available:

Left/Right (or H/L) keys: rotates the camera horizontaly around its focal point.
Down/Up (or J/K) keys: rotates the camera vertically around its focal point.
+/- keys: zoom the scene in/out.
A/Z keys: slow down/speed up the interaction.
Other key binding are the same as in the Display mode.

•

Common to all modes:

F key: switches in and out of the full screen mode (will not work in all shells).
U key: dumps the current view of the scene into an image file on disk.

•

1.2.3 Environment Variables

IFrIT understands the following environment variables (all in capitals):

IFRIT_DIR: The main IFrIT directory where you keep the state file(s) ifrit.ini and possibly other
configuration files. If this variable is not set, IFrIT will check the environment variable HOME. If it
exists, it will make $HOME/.ifrit the main directory (and will create that directory if it does not exist).
If the environment variable HOME is not defined, IFrIT will try to create a main directory at /.ifrit. If
everything else fails, IFrIT assumes that current directory is the main directory.

•

IFRIT_SCRIPT_DIR: The directory where IFrIT keeps animation and control scripts. If not set, IFrIT
will put scripts into its main directory.

•

IFRIT_PALETTE_DIR: The directory where IFrIT keeps custom palettes. If not set, IFrIT will put
palettes into its main directory.

•

IFRIT_IMAGE_DIR: The directory where IFrIT keeps image and animation files. If not set, IFrIT will
put image files into the current directory.

•

IFRIT_DATA_DIR: The default directory for the data files. If not set, IFrIT will start searching for the
data files in the current directory.

•

IFRIT_SCALAR_FIELD_DATA_DIR: The default directory for the scalar data files. If not set, IFrIT will
start searching for the scalar data in the default data directory.

•

IFRIT_VECTOR_FIELD_DATA_DIR: The default directory for the vector field data files. If not set, IFrIT
will start searching for the fector field data in the default data directory.

•

IFRIT_TENSOR_FIELD_DATA_DIR: The default directory for the tensor field data files. If not set, IFrIT
will start searching for the tensor field data in the default data directory.

•

IFRIT_PARTICLE_SET_DATA_DIR: The default directory for the particle data files. If not set, IFrIT will
start searching for the particle data in the default data directory.

•

1 User Guide 1.2.3 Environment Variables

© 2005-2012 by Nick Gnedin 7

1.2.4 Command-line Options

Several options can be specified in the command line when invoking IFrIT. Options begin with the dash (-)
symbol, but the first option is special: it invokes IFrIT with a specific shell.

Different shells support different options, so for the full list of available options you need to refer to the
documentation for the specific shell, or run ifrit with the -help option. However, all shells support the basic
subset of command-line options:

-h/-help/--help: shows the list of available command-line options, including those specific to a
particular shell.

•

-np/--num-procs number: sets the number of processors to number for parallel execution.•
-i/--init-file filename: loads the full internal state from the previously saved state file filename.•
-GPU/--force-GPU: forces IFrIT to try to use GPU even if VTK does not find it.•
-no-GPU/--force-no-GPU: forces IFrIT not to use GPU even if it is present on the system (useful for
running IFrIT remotely).

•

If the last entry on the command line does not form any option, it is taken to be the name of directory; IFrIT
will use this directory as his default DATA directory, overwriting the environment variable.

1.2.5 State File

IFrIT can remember its exact state and save it into the ifrit.ini file, which is placed into main IFrIT directory
(see Environment Variables). This file is not intended to be modified by the user. When IFrIT starts, it looks
for the ifrit.ini file in its main directory. If the file is found, IFrIT will read its internal configuration from it.
Thus, if you spent a long time changing various settings and adjusting IFrIT to your needs, all you need to do
is to save the state, and the next time you start IFrIT, all your settings will be restored automatically, and your
hard work will not be wasted.

You can keep several of state files and use the appropriate one by specifying its name after -i option on the
command line.

1.3 File Formats

1.3.1 Overview

IFrIT can visualize four different types of data:

Scalar data: several scalar variables in 3D space.•
Vector field data: a 3D field of vectors.•
Tensor field data: a symmetric 3x3 tensor in 3D space.•
Particle data: a set of particles (points) with several optional variables (numbers that distinguish
particles from each other) per particle.

•

Each class of data may contain more than one specific type of data. We use the word "type" here in the same

1 User Guide 1.2.4 Command-line Options

© 2005-2012 by Nick Gnedin 8

sense as it is used to describe different data types in computer language (integer, boolean, real, etc). Thus,
each data type is a unique representation of a specific layout of data in space, and is associated with a specific
format of a data file. For example, the built-in Scalars data type describes several scalar variables on a
uniform rectangular mesh in space, loaded with a specific file format. What data types available for each class
depends on what extensions of IFrIT are included in your installation.

Each data type has one-to-one correspondence with an identically (except for skipped white spaces) named
data object. For example, the data object that corresponds to the built-in Scalars data type is named Scalars.

The standard edition of IFrIT includes four built-in data types:

Scalars data file: uniformly spaced 3-dimensional mesh of data values with several scalar variables
per file.

•

Vectors data file: a 3D vector field specified on a uniformly spaced mesh.•
Tensors data file: a symmetric 3x3 tensor field specified on a uniformly spaced mesh.•
Particles data file: three positions and several optional variables for a set of particles (or points).•

Extensions of IFrIT also include other data types, as listed in the Object Reference.

Binary Files

IFrIT can load both the plain text (ASCII) and binary data files. The binary files use Fortran unformatted
file formats - these files can be created in many programming languages, including Fortran, C, and IDL (code
examples are given in Appendix A). Fortran writes binary data into a file in records. Each record contains a
4-byte header, a body of the record, and a 4-byte footer, as shown in the image below:

Structure of Fortran record

The header and the footer are identical, and each contains a 4-byte integer number with the number of bytes in
the body of the record. The body can contain any data. Because the length of the header and the footer are 4
bytes, one record cannot contain more bytes that can be described by a 4-byte signed integer number
(2147483647). It is important that the header and the footer of the record be correct (i.e. contain the number of
bytes in the body). IFrIT uses the header and the footer to verify the integrity of the data file and to deduce the
endiness of the data.

File Sets

IFrIT can load several data files of different formats simultaneously as a "set". For example, if you are
visualizing the built-in Scalars data and Particles data from a series of outputs from the same simulation, you
can load files in pairs (or triplets if you add, for example, a Vectors file, etc). Only Animatable Files can be
loaded as sets. For example, if you load a Particles file named part_1234.bin, and then load a Scalars file
named scal_1234.bin (the same 4-digit record label), IFrIT will recognize these files as a set. The Particles file
becomes a set leader, and you will be able to load files in sets: if you load a new leader (another Particles file,
say, part_5678.bin), then the corresponding Scalars file (scal_5678.bin) will be loaded automatically. Sets
can, of course, include data files of all 4 formats.

If one of the files in a set does not exist, or you load an individual file rather than a set, the set will be broken
and IFrIT will treat files as unrelated.

1 User Guide 1.3.1 Overview

© 2005-2012 by Nick Gnedin 9

Subdirectory docs of IFrIT source distribution contains three files: writeIFRIT.f, writeIFRIT.c, and
writeIFRIT.pro that contain Fortran, C, and IDL code respectively for writing all four types of IFrIT data
files. These files are also listed in Appendix A.

Cell vs Point Data

In order to understand the placement of the data in the scene, you need to know the difference between the
cell and point data. Data can be specified on a uniform mesh in two distinct ways. If every cell of a mesh is
represented as a cube, the data can be specified either at the center of a cube (cell data), or at the vertices of a
cube (point data). Most of VTK classes can only handle point data, while most simulation codes place the
data at cell centers. To handle this inconsistency, IFrIT allows to specify the placement of the data and
converts the cell data into the point data automatically by appropriately shifting the data relative to the
bounding box.

If the data in the data file is the point data, then nothing needs to be done and IFrIT can use it directly. In that
case, though, you have to make sure that the data descriptions in IFrIT and in the file are consistent. For
example, if you specify periodic boundary conditions, the data values on the opposite sides of the data cube
should be identical. If they are not, then extending data periodically beyond the bounding box will create
visualization artifacts.

If your file contains the cell data, IFrIT treats cell centers as vertices of a new uniform mesh; corners of this
new mesh would not, in general, coincide with corners of the bounding box, but all viualization methods
would work properly with your data.

You can thing about cell data as filling the space completely, so cell data provides a value for every spatial
point, even those points that do not lie on the grid. Point data is, instead, sampling the data on a et of discreet
point; interpolation is inevitable when using the point data.

1.3.2 Built-in Scalars Data

IFrIT Scalars data file contains uniformly spaced 3-dimensional mesh of data values. Both, plain text (ASCII)
and binary (Fortran-type binary of any endiness) files are accepted.

Plain text file. This file should have an extension "txt" (as in "myfile.txt", lower-case or upper-case does not
matter) and should contain in its first line three integer numbers: the sizes of the mesh in X, Y, and Z
directions. These dimensions do not have to be the same. Each line after the first one should contain up to 10
floating point numbers as values for the physical variables at each cell of the mesh. The first dimension
changes the fastest. For example, the following file:

12 33 55
1.0456 4.56768 2.45e-30
0.9866 5.45890 3.07e-20
 ...

(12*33*55+1 lines altogether)

defines a 12 by 33 by 55 data mesh with three physical variables.

Binary file. This file should have an extension "bin" (as in "myfile.bin") and should be a Fortran
unformatted binary file. The data in the file must be in single precision (Fortran real*4, C float). The file
should contain at least 2 records. The first record should contain 12 bytes of data as 3 integer numbers: mesh
sizes in three dimensions (n1, n2, and n3). The remaining records should contain n1*n2*n3 floating point

1 User Guide 1.3.2 Built-in Scalars Data

© 2005-2012 by Nick Gnedin 10

numbers each: one scalar variable per record.

Structure of the IFrIT Scalars data binary file

Examples of the code that can write such files is given in Appendix A.

1.3.3 Built-in Vectors Data

IFrIT Vectors file format is identical to the built-in Scalars data file format with three vector components
stored as three scalar variables.

1.3.4 Built-in Tensors Data

IFrIT (symmetric) Tensors data file format is identical to the built-in Scalars data file format with 6 tensor
components stored as 6 scalar variables in the following order: 11, 12, 13, 22, 23, 33.

1.3.5 Built-in Particles Data

IFrIT Particles data file contains three positions and, optionally, several variables for a set of particles. Both,
plain text (ASCII) and binary (Fortran-type binary of any endiness) files are accepted.

Plain ASCII file. This file should have an extension "txt" (as in "myfile.txt", lower-case or upper-case does
not matter) and should contain in its first line one integer number: the total number of particles in the file. The
second line should contain 6 numbers that determine how the particle positions relate to the bounding box.
The first three numbers are X, Y, and Z coordinates of the lower-left-back corner of the bounding box in the
units in which particle coordinates are given. The last three numbers are X, Y, and Z coordinates of the
upper-right-front corner. For example, if you ran a simulation with a cubic box of 5 meters in size, and your
particle positions are given in meters, and the left-lower-back corner of your box has coordinates of (0,0,0)
meters, then the second line should be: 0.0 0.0 0.0 5.0 5.0 5.0 X-label Y-label Z-label. Optionally,
three strings are allowed at the end of the line to use as axis labels if the bounding box is displayed as
3-dimensional axes. This is useful for making 3D scatter plots.

Each line after the second one should contain three floating point numbers as values for the three coordinates
for each particle and, optionally, up to 10 more numbers as values of variables. The variables can be used to
distinguish particles in a set. For example, the following file:

120
0.0 0.0 0.0 5.0 5.0 5.0
1.0456 4.56768 3.05678 2.45e-30 1.11e+10 0.555
0.9866 5.45890 -2.0568 3.07e-20 2.44e+11 -0.34
 ...

(120+2 lines altogether)

1 User Guide 1.3.3 Built-in Vectors Data

© 2005-2012 by Nick Gnedin 11

defines a set of 120 particles with three variable fields defined. Notice that the second particle is located
outside the bounding box - there is nothing wrong with that.

Binary file. This file should have an extension "bin" (as in "myfile.bin") and should be a Fortran
unformatted binary file. The file should contain at least 5 records. The first record should contain 4 bytes of
data as 1 integer number: the number of particles n. The second record should contain 24 bytes as 6 floating
point numbers for 6 values of the bounding box. Records from 3 to 5 contain n single or double precision
floating point numbers (4*n or 8*n bytes) each, which are x, y, and z coordinates of particles (i.e. all x
coordinates are stored in record 3, all y coordinates are stored in record 4, etc). Optional remaining records
contain n single precision floating point numbers with particle variables (scalar values that characterize
individual particles).

Structure of the IFrIT Particles data binary file

Examples of code that can write such files is given in Appendix A.

1.4 IFrIT Palettes

1.4.1 Built-in Palettes

IFrIT includes a set of pre-defined palettes (or color-maps), i.e. a one-dimensional sequences of colors that
are used to map scalar values to a color of a point in the scene. Palettes identified by their numbers:

1: Rainbow

2: Isolum

3: Ametrine

4: Temperature

1 User Guide 1.3.5 Built-in Particles Data

© 2005-2012 by Nick Gnedin 12

5: Blue-white

6: Prizm

7: Starlight

8: Green-white

9: Blue-red

10: Haze

11: Stern

12: Greyscale

13: 3 color

14: 4 color

Each palette can be used in its original form or "reversed", i.e. with colors changing from right to left. In
addition, new palettes can be created using Palette:New() method.

Some objects also use a special palette called "brightness", which includes shades of different intensity for the
current object color. For example, if you the color of the object is red, then using the brightness palette will
color the object with shades of red of varied brightness. This palette can be useful, for example, for coloring
particles with varied intensity of yellow color, to represent stars of different magnitudes.

1.5 Animation Support

1.5.1 Animation Mode

In the Animation mode IFrIT works automatically to generate an animation of your scene. You cannot control
IFrIT interactively in this mode and you cannot change the scene - although IFrIT can change the scene for
you automatically. By default, the output of an animation is a series of image files that show consequitive
snapshots of the visualization scene. Animation images have frame as the root of their names and they are
distinguished by a 5-digit sequential number; each files for a given animation go into the subdirectory anim,
i.e. the results of an animation will be called:

anim/frame-00001.jpg
anim/frame-00002.jpg
anim/frame-00003.jpg
...

(up to 99999 images can be created). In this case it remains your task to convert the set of images into an
animation format of your choice (many image viewers will also have a slide show feature, so you can simply
display the set of images as a slide show too). VTK also has a capability has been added to create MPEG (if it
was linked with the MPEG library) and AVI (on some platforms) movies - the choice is controlled by the
ImageWriter.MovieOutput property.

1 User Guide 1.4.1 Built-in Palettes

© 2005-2012 by Nick Gnedin 13

To avoid overwriting already created files, subsequent animations from a single IFrIT run will go into
subdirectories anim2, anim3, etc.

Animation mode is only available if the name of the data file has a specific form. Even if you are going to use
just one file for your animation (for example, for a fly-by through a fixed scene), you still need to name your
data file in a standard way so that IFrIT can understand it as belonging to the animation series - i.e. as an
animatable file.

1.5.2 Animatable Files

Animations are normally made from a series of files. IFrIT will automatically read new files in order to create
an animation. The file names must be in the following format for IFrIT to find them:

[any_string_as_prefix]NNNN.suf

where suf is txt for plain text files or bin for binary files (see Supported Files Formats), NNNN is a 4-digit
number (from 0000 to 9999) called record number, and the file name can contain any string before that as a
prefix. For example, the following file names will be recognized by IFrIT as series:

myfile0345.bin
var_9988.bin
0564.txt

whereas the following file names are valid names for a single data file, but cannot be used in making an
animation:

myfile345.bin
var_9988a.bin

0564var.txt.

Files that belong to a series are called animatable.

If IFrIT recognizes the data file as a member of a series, it will first complete all the operations requested for
the current file, and then will automatically load the next file in the series. The files in the series do not have
to be numbered sequentially. For example, if the series contains only two files, myfile0345.bin and
myfile0817.bin, IFrIT will load myfile0817.bin right after myfile0345.bin, even if many numbers in
between are missing. IFrIT will not leave the Animation mode until all the files in the series are visualized.

1.5.3 Running Animator

Animator object runs in the following way: for each animatable file (each record) it modifies the displayed
scene based on its internal settings (for example, if the Animator.Style property is set to 1 (rotate/scale, the
scene will be rotated and/or scaled based on the values of Animator.Phi, Animator.Theta, Animator.Roll,
and Animator.Zoom properties) for a number of steps (the actual number is set by the
Animator.NumberOfFrames property). After that number of frames is produced, the next animatable file
(i.e. next record) is loaded. If the record is absent, the animation stops.The built-in animation support is rather
limited, hence one needs to use a script to achieve a complete control of IFrIT objects. While there are many
ways the Animator object can be run from a script, it offers a convenient function Animator.Continue() that
implements the main animation driver.

1 User Guide 1.5.1 Animation Mode

© 2005-2012 by Nick Gnedin 14

The built-in behaviour is equivalent to a trivial loop over this function (using Python as the scripting
language):

while ifrit.Window[0].Animator.Continue(): pass

but the trivial loop can be, of course, modified to an arbitrary complexity. For example, the following Python
segment

win = ifrit.Window[0]
win.Animator.Reset()
level = 0.1
while win.Animator.Continue():
 win.Surface[0].IsoSurfaceLevel = level
 level = level*1.01

first resets all internal Animator settings, and then modifies the level of the isosurface for every subsequent
animation frame.

Two convenience functions Animator.CurrentFrame() and Animator.CurrentRecord() can be used to
query the values of the current record and the current frame in the animation loop.

1 User Guide 1.5.3 Running Animator

© 2005-2012 by Nick Gnedin 15

2 Shell Reference

2.1 GUI Shell Reference

2.1.1 Graphical User Interface (GUI) Shell

The GUI shell provides a fast access to all object
properties through a set of GUI widgets (on-screen
control elements). All widgets have a dynamic help
feature: pressing [Cntr] and F1 keys together while a
mouse cursor points on a particular GUI widget will
pop-up a small help window for that widget.

A GUI shell also accepts several additional command-line options:

-d: start IFrIT with all windows docked together; this is equivalent to starting IFrIT and then docking
windows using the corresponding menu option.

•

-fs <number>: increase (if number > 0) or decrease (if number < 0) the size of font in GUI windows;
this also increases/decreases window sizes.

•

-nf: do not show a splash window at start-up.•
-om/--old-style-window-manager: this option instructs IFrIT not to expect that the window
manager is modern and has a close window button on top of a window; if this option is specified,
IFrIT will place a close button on dialog windows.

•

-sd/--small-desktop: this option tells IFrIT that the size of the desktop is small, so that it should
not arrange windows on the desktop; by default, IFrIT assumes that the desktop is small if its height is
less than 900 pixels and its width is less than 1200 pixels.

•

-sc/--slow-connection: this option tells IFrIT that it is being run remotely and that the network
connection is slow; in that case rendering of the scene is not automatic, instead either a Render button
(that appears at the bottom of the main window) needs to be pressed or the visualization window must
be clicked on to render the current scene.

•

-ddi/--disable-delayed-initialization: by default IFrIT starts with minimal initializations,
postponing expensive operations of creating various dialogs and pages only when these dialogs and
pages are actually used. This feature is experimental; if segfaults occur during the operation of the

•

© 2005-2012 by Nick Gnedin 16

GUI, this option may be used to force complete initialization of all widgets before at startup.

In addition, the GUI shell includes several dialogs that provide additional functionality, as described below.

2.1.2 Script Window

Script Window is a tool designed to run and
debugging scripts. It includes a standard editor with
usual New, Open, Save, etc file manipulation
functions and Undo, Cut, Paste etc text editing
functions for editing the script. Script is run by using
the Run menu or a yellow "play" button. If
Run:Debug script menu item is checked, minimal
script debugging capabilities become available: a
break point can be set on a particular script line, and
after the script is stopped at the breakpoint, the script
can be executed one line at a time. During the
execution, the current script line is highlighted as if
it was selected in the editor mode, and selection
follows the script as it is being executed.

The bottom part of the Script Window is an area
where the script stdout and stderr are directed (stderr
output will be printed in red).

Finally, in the debugging mode a single editor line appears at the bottom, which can be used to execute simple
script commands while the main script is running, like printing variable values or changing the values of
variables.

The script segment in the editor window is saved into a history buffer after it is executed. If the segment is
replaced with a new segment, the new one will be saved as well, etc, a-la a notebook. The history buffer can
be loaded back into the editor from the main menu.

2.1.3 Palette Editor

Palette Editor allows to modify existing palettes,
create new ones, save or load custom palettes
to/from a file, and remove palettes from the list.
Editing of a palette is performed using three
windows for sculpting a color component for all
three colors. Other functions can be invoked by
pressing the respective buttons. Palette Editor saves
palettes into files with extensions ".ipf" (IFrIT
Palette File).

2 Shell Reference 2.1.1 Graphical User Interface (GUI) Shell

© 2005-2012 by Nick Gnedin 17

2.1.4 Data Explorer

The Data Explorer dialog can be used to obtain
information about the currently loaded data. The
available variables from the "All variables" window
can be moved to the "Shown variables" window
with a click of a button. The histograms of all shown
variables are displayed in the main window, and the
information about the top shown variables is listed
on the right.

2.1.5 File Set Explorer

File Set Explorer can be used to load an arbitrary
member of a file set. The main part of the window is
a list of members in the current file set. Clicking
with the left mouse button on any member of the set
will highlight it. Using the mouse with the left
button pressed, several consequitive members can be
highlighted at once. Pressing the Enter key will load
selected members of the set one after another.
Double clicking on a given member will load this
one member too. In addition to using the mouse, a
user can also use keyboard navigation (up and down

keys, Page Up and Page Down, and Home and End

keys) to move along the displayed list. If the
Control key is pressed together with other
navigation keys, the selection will change instead.
If the Load data for all visualization

windows box is checked, IFrIT will try to load
corresponding members (with the same record
number) for all sets displayed in various
visualization windows. For example, if window #1
shows the data from a file aaa_0010.bin, and
window #2 shows the data from a file
bbb_0015.bin, then loading the file aaa_0020.bin
in window #1 will also cause loading of the file
bbb_0020.bin in window #2 (if such a file exists).

2 Shell Reference 2.1.4 Data Explorer

© 2005-2012 by Nick Gnedin 18

2.1.6 Image Composer

Image Composer dialog is a tool that allows you to
organize several visualization windows into one
image (both as a single image and as a part of an
animation). Image Composer has two layers: a
background and a foreground. A small book (tab)
widget to the right of the drawing area gives you
controls for these two layers. Background layer
consists of regularly tiled images from one or
several visualization windows. You van change the
number of tiles in the horizontal and vertical
directions, assign a given visualization window to a
given tile (or not assign any window at all), add a
border to the full image with a selectable color, and
specify whether the border only surrounds the whole

image or each individual tile as well. Tiles that have no visualization window attached to them can be filled
with a background image that should be read from an external file. Usual IFrIT image formats are understood
(PNG, JPEG, PNM, BMP, and TIFF). Foreground layer consists of freely floating "inserts" that must be
associated with a visualization window. Inserts can be moved around by clicking on them with the left mouse
button and dragging them around. They can be scaled to a fraction of their original size and added a border of
a predefined color. Check the Reference Guide for the Image Composer object for more information.

2.1.7 Picker Window

Picker Window is brought up during the pick
operation - when you press the "P" key in the
visualization window. If anything is picked in your
scene, the Picker Window will appear, and a small
marker sphere will be placed at the picked position.
The Picker Window has a slider to control the size
of the matker and a check box to select hardware vs
software picking. The hardware picking is much
faster, but may not work properly when translucent
objects are present in the scene.

2 Shell Reference 2.1.6 Image Composer

© 2005-2012 by Nick Gnedin 19

2.1.8 Parallel Controller

Parallel Controller can be used to monitor the
parallel performance. Most of IFrIT operations can
be done in parallel if more than one processor is
available. The maximum possible number of
processors that IFrIT will use is set by -np
command-line option.

2.1.9 ART File Options

When opening ART data files, several specialized
options are available via the ART File Options
dialog: limiting the number of mesh levels read,
loading the particle data together with the mesh data
(IFrIT will recognize both old - PMcrd*.DAT - and
new - *.dph - file names), selecting a subset of mesh
variables to load, optimizing the placement of the
data in memory for better cache access (the latter
takes extra time and temporarily uses about 20%
more memory; the cache optimization option only
makes sense to use if the user plans to do detailed
analysis of a given data file), and overwriting the
particle parameter NGRIDC set in the particle data
file (this parameter may not be set correctly, but
IFrIT uses it to scale particle coordinates to OpenGL
coordinates).

2 Shell Reference 2.1.8 Parallel Controller

© 2005-2012 by Nick Gnedin 20

2.1.10 ART Cosmology Warning

The ART Cosmology Warning dialog reports a
discrepancy between the cosmological parameters in
the Variables and Particles data files.

2.1.11 ART Mesh Explorer

The ART Mesh Explorer dialog allows to traverse
the ART mesh cell-by-cell horizontally (in space) as
well as vertically (over levels). It provides
information about a given cell, and is complimentary
to the Picker object, which provides information
about a specific spatial location.

2.2 Non-GUI Shell Reference

2.2.1 Command-line Shell

The command-line shell is simply an interface to the underlying script interpreter. For convenience, an
additional function inc(file) is defined for the interpreter, that loads and executes the file file. It is
introduced primarily for portability, and is an analog of execfile in Python 2, which Python 3 unfortunately

2 Shell Reference 2.1.10 ART Cosmology Warning

© 2005-2012 by Nick Gnedin 21

is misisng. As a bonus, if the argument file starts with +, it is prepended with the value of IFRIT_DIR
environment variable (if set).

2.2.2 Off-screen Shell

The off-screen shells runs IFrIT in the background, and, hence, does not offer any direct interaction with
visualization objects. In order to make visualization, a file with the script should be supplied as the first
non-option argument (i.e. the first argument not starting with the dash -). Be aware, however, that on Unix it
still requires a valid X11 display to be present - i.e. you can use that shell to run IFrIT in the background of an
X-terminal, but not on a "headless" worker node of a cluster that does not have an OpenGL installation. For
the latter mode, you will need to (i) install Mesa software rendering library (and be praised if you succeed),
(ii) compile VTK with Mesa rather than your native system OpenGL library, and (iii) link IFrIT to that VTK
installation. Only then the off-screen shell will work without an active X11 display. Here is some info on how
this is achieved for ParaView, which also uses VTK:
http://www.paraview.org/Wiki/ParaView/ParaView_And_Mesa_3D, but beyond that you are entirely on
your own.

2 Shell Reference 2.2.1 Command-line Shell

© 2005-2012 by Nick Gnedin 22

3 Object Reference

3.1 Overview

3.1.1 Objects and Properties

The root of the object hierarchy is the ifrit object; it serves as a container to other objects and performs a few
other miscellaneous functions. The diagram below shows the hierarchy of various objects (the complete
hierarchy is shown in Object Reference):

The ifrit object includes one or more Window objects. A Window object appears as an IFrIT visualization
window on the screen; it forms an independent part of IFrIT that has its own set of other (sub-)objects and,
often, its own data. Some of Window objects may share the data with another Window object - in that case
the owner of the data is called a "parent" Window object, and sharing Window objects are called "clones".
Irrespectively of whether a given Window object is a clone or a parent, it has a complete set of its own
(sub-)objects.

Window objects use other objects for various functions. For example, some objects are responsible for a
general setup of the visualization scene, such as lighting (Lights object), camera (Camera object), bounding
box (BoundingBox object), clipping plane(ClipPlane object), and various accessories (such as rulers, labels,
measuring boxes, etc).

Other objects perform operations on various components of the visualization scene. For example the Surface
object represents a two-dimensional surface within the visualization scene that samples the three-dimensional
scalar data (either as an isosurface of a particular scalar variable, or a specified geometric shape like a sphere
or a plane), while the Particles object represents a set of particles (points).

© 2005-2012 by Nick Gnedin 23

Yet another group of objects perform various functions that are not directly represented in the visualization
scene. For example, the DataReader object is responsible for loading data files into IFrIT, while the
Animator object creates animations of your visualization scene in a diverse variety of ways.

Several objects do not belong to one of the Window objects, but rather communicate with all of them. An
ImageComposer object is responsible for composing a snapshot or an animation image from several
windows. An array of Palette objects represents palettes used by IFrIT. The complete hierarchy of all objects
is presented in the Object Reference Guide.

All object are controlled by properties. You can think of a property as of a special variable: as soon as you
assign a new value to the variable, something happens. For example, if you assign a value true to the
property BoundingBox.Visible, the bounding box will appear in the visualization scene. Assign false to that
property, and the bounding box disappears.

Properties can be controlled in two ways. A GUI shell uses GUI elements (widgets) to directly set or get a
value of a property. Alternatively, a shell can use a scripting language and access object properties as script
variables. In a command-driven shell a script is a must - otherwise, IFrIT cannot be controlled; in a GUI shell
a script is optional, but without a script animation capabilties will be rather limited. Currently only Python is
supported as IFrIT scripting language (the primitive script of IFrIT 3 is no longer supported), but other
languages may be added in the future (Python is popular, but it is kind of an overkill for animation scripting,
and its syntax is too restrictive for efficient access to object properties).

In addition to properties-variables, some objects also have methods (C++ users will find terminology
familiar) - script functions (rather than variables). For example, Window.CloneOf() method returns the index
of the parent window if this Window object is a clone of another one, or invalid index if it is not a clone.

On a command line a given object property is accessed in a way consistent with the currently used scripting
laguage syntax. Using Python as an example, the complete name of the property Visible of the object
BoundingBox that belongs to the first Window object is addressed as
ifrit.Window[0].BoundingBox.Visible. A BoundingBox belonging to the second window is accessed as
ifrit.Window[1].BoundingBox.Visible, etc. Of course, in Python one can always assign a name to any
object, so the assignment b = ifrit.Window[0].BoundingBox will let the user to access the property Visible
simply as b.Visible. Never-the-less, full object names can be very long! For example, the type of a screen
representation with which to display the particles that represent the built-in Particles data is fully referred to
as ifrit.Window[0].Particles["Particles"].Type - such names will strain the patience of even most hardcore
command-line afficionados.

In order to simplify naming objects and their properties, each object and property has a short form for its name
as long as a full name. In short form ifrit.Window[0].Particles["Particles"].Type becomes
ifrit.w[0].p["p"].t, which should satisfy even the strictest Linux guru.

3.1.2 Object Hierarchy

ifrit•

ImageComposer•
Palette•
Window•

ARTMesh♦
Material◊

3 Object Reference 3.1.1 Objects and Properties

© 2005-2012 by Nick Gnedin 24

Animator♦
BoundingBox♦
Camera♦
ClipPlane♦
ColorBar♦
CrossSection♦

Material◊
Data♦

ARTBlackHoleParticles◊
ARTEddingtonTensorField◊
ARTParticles◊
ARTStellarParticles◊
ARTVariables◊
ARTVelocityField◊
GADGETBoundaryParticles◊
GADGETBulgeParticles◊
GADGETDiskParticles◊
GADGETGasParticles◊
GADGETHaloParticles◊
GADGETStellarParticles◊
NativeVTKPolyData◊
NativeVTKScalars◊
NativeVTKTensors◊
NativeVTKVectors◊
Particles◊
Scalars◊
Tensors◊
Vectors◊

DataReader♦
ImageWriter♦
Label♦
Lights♦
Marker♦

Material◊
MeasuringBox♦
Particles♦

Material◊
Picker♦
Ruler♦
Surface♦

Material◊
TensorField♦

Material◊
VectorField♦

Material◊
Volume♦

Material◊

3 Object Reference 3.1.2 Object Hierarchy

© 2005-2012 by Nick Gnedin 25

3.2 Regular (Non-Data) Objects

3.2.1 ARTMesh object

Short form: am

ARTMesh is a view object that shows a representation of the Adaptive (AMR) Mesh under the ART
extension. The mesh can be shown either as a collection of dots representing centers of computational
cells, or as a mesh frame consisting of edges of all or a subset of computational cells.

Available properties:

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects
except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check
descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.

♦

LevelColor (short form: lc); color[25]
The color of a given level of the mesh.

♦

LineWidth (short form: lw); int[*]
The width of a line representing the mesh cell of a given level in grid mode.

♦

MaxLevel (short form: maxl); int
MaxLevel and MinLevel properties specify the range of mesh levels to show.

♦

Method (short form: m); int[*]
A method for visualizing the AMR mesh. Two values are currently supported:

Method=0 (point mode) will display the mesh as a set of points, each representing a
center of a single cell,

◊

Method=1 (grid mode) will show the outline of each cell, like a mesh skeleton.◊

♦

MinLevel (short form: minl); int
See MaxLevel.

♦

Opacity (short form: o); float[*]
See Color.

♦

PointSize (short form: ps); int[*]
The size of a point representing the mesh cell of a given level in point mode.

♦

SampleRate (short form: sr); int
A factor by which the mesh is rarefied. Because a realistic computational mesh is very dense,
it would not show well on a limited resolution screen. This factor can be used to show only a
subset of all cells, thus making the scene legible.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3 Object Reference 3.2 Regular (Non-Data) Objects

© 2005-2012 by Nick Gnedin 26

3.2.2 Animator object

Short form: a

Animator creates a series of snapshots ("animation"). It can modify the scene between the subsequent
snapshots in a variery of ways, from plain rotation to following a camera path, and load subsequent
data files at specified intervals to follow the evolution of the scene, as explained in Animation
Support. The animation can start with a title page, and a small logo image can be displayed in every
animation frame.

Available properties:

Continue (short form: c); bool()
This function is the main driver for the Animator object. Each call advances the animation by
one frame; the function returns true if the animaton is to continue, or false otherwise. It is
designed to be used in a script in a while loop, like this (for Python script):
while Animator.Continue():
-- make your changes between frames --

♦

CurrentFrame (short form: cf); int()
A query (script function) that returns the current animation frame.

♦

CurrentRecord (short form: cr); int()
A query (script function) that returns the current file record.

♦

Debug (short form: d); int
A boolean property that toggles a debugging mode in which the animator replaces the actual
scene (which may be expensive to render) with a simple object, which is fast to render while
the script is being debugged.

♦

LogoFile (short form: lf); string
The name of the file with the image to be used as a logo shown on every animation snapshot
image. The image must be in one of the formats understood by VTK (JPEG, PNM, BMP,
TIFF, and PNG). Logo images are usually small, if the image in the file exceeds 20% of the
animation snapshot image, it will be scaled down. The logo image can be placed in one of the
four corners of the animation image with the LogoLocation property, and its opacity
(transparency) can be controlled with the LogoOpacity property.

♦

LogoLocation (short form: ll); int
The position of the logo image on the screen. Integer numbers from 0 to 3 are accepted, as
follows:

upper-left corner: LogoLocation=0◊
upper-right corner: LogoLocation=1◊
lower-left corner: LogoLocation=2◊
lower-right corner: LogoLocation=3◊

♦

LogoOpacity (short form: lo); float
The opacity of the logo image, given as a floating point number from 0 to 1. Zero opacity
makes the logo transparent (invisible), while opacity of 1 makes it solid (non-transparent).

♦

NumberOfBlendedFrames (short form: nb); int
The number of consequitive frames that are blended together in each animation snapshot.
Blending frames creates an impression of gradual transition from one frame to another.

♦

NumberOfFrames (short form: nf); int
The number of frames for each input data file. This option can be used in several ways. For
example, if you have only one file in a series, using this option you can create an animation of
rotation or fly-by through your data series. If you have a whole series of data files, by setting
the number of frames per file you can control the speed with which the animation is played.

♦

3 Object Reference 3.2.2 Animator object

© 2005-2012 by Nick Gnedin 27

For example, if you have just 30 data files, they will be played in 1 second with a regular
MPEG stream. By setting the number of frames per file to 10, you extend your animation for
10 seconds (with 3 frames per second it will still look ok if the differences between
subsequent data files are not great).
NumberOfTitlePageBlendedFrames (short form: tbf); int
The number of frames during which the title page is blended with the first image of the
visualization scene. Blending creates an effect of a title page slowly dissolving to reveal the
visualization scene.

♦

NumberOfTitlePageFrames (short form: tnf); int
The number of frames during which the title page is displayed at the beginning of the
animation.

♦

NumberOfTransitionFrames (short form: nt); int
The number of consequitive frames that are blended together when a new data file is read.
This property is similar to NumBlendedFrames, but only blends frame after a file read, other
frames are saved into the image files as they are.

♦

Phi (short form: dp); float
Properties Phi, Theta, and Roll control the angles (in degrees) by which the scene is rotated
between the two consequitive frames. Phi and Theta are usual spherical angles, i.e. phi
direction is horizontal and theta direction is vertical. Roll angle is the angle around the axis
parallel to the axis of the camera (an axis perpendicular to the plane of the screen). In the
tumble mode the direction of rotation changes, so only the total angle of rotation matters.

♦

Reset (short form: r); bool()
An action that resets all internal setting to the default state. This command may be useful
when the Animator is driven from a script, for ensuring that the script does not accidently
inherit any previous settings.

♦

Roll (short form: dr); float
See Phi.

♦

Style (short form: s); int
A method of transformation of a scene between the two subsequent frames. The first frame of
the animation is produced from the current scene. After the first frame, IFrIT can transform
the scene for the next frame in one of the four ways:

static (Style=0): the scene does not change from a frame to frame. The scene will
change only if new data files are loaded.

◊

rotate/scale (Style=1): the scene rotates (and optionally scales) during the animation
by a predefined amount (set with Phi, Theta, Roll, and Zoom properties).

◊

tumble (Style=2): the scene tumbles in a random fashion during the animation, i.e. it
rotates (and optionally scales) by a predefined amount in the direction that slowly
changes by a random amount. This is a nice feature for making animations that show
the whole scene all the time.

◊

fly-by (Style=3): the camera flies through the visualization scene along a randomly
precessing trajectory. This feature allows to focus on the detail, but the whole scene
may not be visible for most of the time. IFrIT however takes care to insure that the
camera always points toward the central part of the scene. The starting position of the
camera depends on the projection mode: in the perspective projection mode the
camera starts from the current position, in the parallel projection mode the camera
moves closer to the center of the scene before starting a fly-by.

◊

♦

Theta (short form: dt); float
See Phi.

♦

TitlePageFile (short form: tf); string
The name of the file with the image that should be used as title page for the animation. The
image must be in one of the formats understood by VTK (JPEG, PNM, BMP, TIFF, and

♦

3 Object Reference 3.2.2 Animator object

© 2005-2012 by Nick Gnedin 28

PNG). If the size of the title page image is different than the size of the animation snapshot
image, the title page image will be smoothly stretched to match the animation image. The title
page will be displayed for a number of frames set by the NumTitlePageFrames property.
After that, a number of frames specified by the NumTitlePageBlendedFrames property will
be blended with the first image of the visualization scene, producing an effect of a gradually
dissolving title page.
Zoom (short form: dz); float
A zooming factor by which the scene is scaled between the two consequitive frames.

♦

3.2.3 BoundingBox object

Short form: bb

BoundingBox object represents the frame that encloses (but not truncates) the main visualizatin
scene. The bounding box serves as a useful reference frames for placing other objects in relation to
each other.

Available properties:

AxesLabels (short form: l); string[3]
When the Bounding Box is displayed as axes, properties AxesLabels and AxesRanges
specify labels and ranges for the three axes respectively. The former property takes 3
string-values arguments, while the latter takes 6 floating point numbers as Xmin, Xmax, Ymin,
etc.

♦

AxesRanges (short form: r); float[6]
See AxesLabels.

♦

Type (short form: t); int
The type of the Bounding Box, as follows:

0: the default IFrIT-style bounding box (red-blended-into-blue);◊
1: the classic bounding box (red in X-direction, green in Y, blue in Z);◊
2: the hair-thin bounding box (one-pixel wide lines);◊
3: the classic bounding box with X, Y, and Z axes shown as coordinate axes, with
arrows at the end, labels, and ranges. This type is useful for showing 3D scatter plots.

◊

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.4 Camera object

Short form: c

Camera object represents the current camera that observes the scene. The camera supports two
projection modes: parallel (orthogonal) and perspective. The orientation of the camera is set by its
Position, a FocalPoint (the point in space the camera is directly looking at), and direction in space
that the camera considers to be "up" (ViewUp vector). In perspective projection that's all one needs to
fully specify the camera. In parallel projection the distance between the focal point and camera
position is inrrelevant (the focal point is at infinity), so the scale of the view is set by the
ParallelScale property.

3 Object Reference 3.2.3 BoundingBox object

© 2005-2012 by Nick Gnedin 29

Available properties:

Azimuth (short form: a); bool(double)
Rotate the camera horizontally (about the view up vector) centered at the focal point. This is a
method that specifies the angle of rotation in degrees.

♦

ClippingRange (short form: cr); pair
This property sets the location of the near and far clipping planes along the direction of
projection (in OpenGL coordinates). Both of these values must be positive. How the clipping
planes are set can have a large impact on how well z-buffering works. In particular the front
clipping plane can make a very big difference. Setting it to 0.01 when it really could be 1.0
can have a big impact on your z-buffer resolution farther away.

♦

ClippingRangeAuto (short form: cra); bool
Switch the automatic adjustment of the Clipping Range on and off. In almost all cases this
property should be set.

♦

Elevation (short form: e); bool(double)
Rotate the camera vertically (about the cross product of the direction of projection and the
view up vector) centered on the focal point. This is a method that specifies the angle of
rotation in degrees.

♦

EyeAngle (short form: ea); double
Separation between eyes (in degrees) in the stereo mode.

♦

FocalPoint (short form: f); vector
The focal point of the camera.

♦

OrthogonalizeView (short form: ov); bool()
Re-orient the camera for the nearest coordinate axis to align along the direction of viewing,
and other two directions to align horizontally and vertically.

♦

ParallelProjection (short form: pp); bool
The camera projection mode to parallel (if true), or perspective (if false).

♦

ParallelScale (short form: ps); double
The scaling used for a parallel projection, i.e. the height of the viewport in OpenGL distances.
Note that the ParallelScale parameter works as an "inverse scale" - larger numbers produce
smaller images. This method has no effect in perspective projection mode.

♦

Pitch (short form: p); bool(double)
Rotate the focal point vertically (about the cross product of the view up vector and the
direction of projection, centered at the camera's position. This is a method that specifies the
angle of rotation in degrees.

♦

Position (short form: x); vector
The position of the camera in space (a 3D vector).

♦

Reset (short form: rs); bool()
A method that resets the camera so that the nearest side of the bounding box faces the screen.

♦

Roll (short form: r); bool(double)
Rotate the camera about the direction of projection. This is a method that specifies the angle
of rotation in degrees

♦

ViewAngle (short form: va); double
The width (in degrees) of the field of view.

♦

ViewAngleVertical (short form: vav); bool
A boolen property that specifies whether the ViewAngle is measured vertically or
horizontally.

♦

ViewUp (short form: u); vector
The direction that camera considers to be "up".

♦

Yaw (short form: y); bool(double)
Rotate the focal point horizontally (about the view up vector centered at the camera's

♦

3 Object Reference 3.2.4 Camera object

© 2005-2012 by Nick Gnedin 30

position). This is a method that specifies the angle of rotation in degrees.
Zoom (short form: z); bool(double)
In perspective mode, decrease the view angle by the specified factor. In parallel mode,
decrease the parallel scale by the specified factor. A value greater than 1 is a zoom-in, a value
less than 1 is a zoom-out.

♦

3.2.5 ClipPlane object

Short form: cp

A clipping plane cuts off a portion of the scene, thus allowing to look inside a visuaized object. This
objects controls up to 6 clipping planes; each plane is manipulated by Direction and Position
properties.

Available properties:

Delete (short form: dlt); bool(int)
A method (script function) to delete a given clipping plane.

♦

Direction (short form: d); vector
The direction of the normal to the clipping plane - this is a vector with each component
corresponding to one clipping plane.

♦

New (short form: new); bool()
A method (script function) to create a new clipping plane. The newly created plane will be
located at the rigin and oriented perpendcular to the Z axis.

♦

Number (short form: num); int
The number of clipping planes (uo to 6). Direction and Position properties become
Number-sized arrays, and individual properties of separate clipping planes can be set
independently as different components of each property array.

♦

Position (short form: x); vector
The position of the center of the plane - this is a vector with each component corresponding to
one clipping plane.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.6 ColorBar object

Short form: cb

ColorBar shows a correspondence between the color of a point in space and the value of scalar
variable which this color represents. The object displays two bars with text captions on the left and
right side of the visualization window. Normally, IFrIT will display color bars automatically, but they
can also be manipulated manually.

Available properties:

Automatic (short form: a); bool
A switch specifying whether the ColorBar is in the automatic mode or not. In the automatic
mode, IFrIT determines what variables to display at what color bar. In the manual mode the

♦

3 Object Reference 3.2.5 ClipPlane object

© 2005-2012 by Nick Gnedin 31

contents of each color bar is determined by the user.
Color (short form: c); color
The color of the text legend. In properties colors are specified as 3-component RGB values
int,int,int (like 255,0,0 for red).

♦

DataType (short form: dt); data[2]
The data type for the right (DataType[0]) and left (DataType[1]) color bar.

♦

Palette (short form: p); int[2]
The palette index for the right (Palette[0]) and left (Palette[1]) color bar. The palette id is
the same quantity used to specify a palette for visualization objects (palette index if >0 and
-palette index if

♦

SideOffset (short form: so); float
A distance by which the color bars are offset from the side of the visualization window, in the
fraction of the window width.

♦

Size (short form: s); float
A relative size of the color bar as a fraction of the window size.

♦

Var (short form: v); int[2]
The index of a variable for the right (Index[0]) and left (Index[1]) color bar.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.7 CrossSection object

Short form: x

A Cross Section object shows a section (a slice) of the visualization scene. The slice is orthogonal,
i.e. it is always perpendicular to either X, or Y, or Z axis. Use a Surface object to show an arbitrary
oriented slice. Because of the restricted orientation, the Cross Section object is significantly faster to
visualize than a Surface object. Multiple slices can exists simulatenously. An important feature of the
Cross Section object is that it treats point and cell data differently. If you want to show your data as it
is, without any interpolation, set the VoxelLocation property of the DataReader object to 1 (cell
data) and use no interpolation in this object. This is the only object that can show your data without
any interpolation.

Available properties:

Delete (short form: dlt); bool(int)
A method (script function) to delete a given instance of this object.

♦

Direction (short form: d); int[*]
The orientation of the Cross Section object. Takes one of the values 0, 1, or 2 (the slice is
perpendicular to the X, Y, or Z axis respectively).

♦

InterpolateData (short form: id); bool[*]
A boolean property that specifies whether the data are linearly interpolated on the cross
section.

♦

LevelToMark (short form: ltm); int[*]
The level of the ART mesh to mark.

♦

Location (short form: l); double[*]
The current location of the Cross Section along its direction.

♦

MarkOneLevel (short form: mol); bool[*]
A boolean property that toggles showing crosses (x) over all cells of a specified level, to

♦

3 Object Reference 3.2.6 ColorBar object

© 2005-2012 by Nick Gnedin 32

identify which cells and their level on the cross section.
MaxLevel (short form: maxl); int
The maximum level of the mesh to show on the cross section.

♦

MeshColor (short form: mc); color[*]
The line color for plotting the ART mesh on top of the cross section.

♦

MeshLineWidth (short form: lw); int[*]
The line width for plotting the ART mesh on top of the cross section.

♦

MeshVisible (short form: mvis); bool[*]
A boolean property that toggles showing the ART mesh overlaid on the cross section.

♦

Method (short form: m); int[*]
One of the available methods to render a cross section: polygons (0) or texture (1). The
textute method is usually faster and gives the best quality, but it may not be always available.

♦

New (short form: new); bool()
A method (script function) to create a new instances of this object. The newly created
instance will be initially identical to the last one.

♦

Number (short form: num); int
The number of instances (independent screen representations) of this object. All properties of
the object become Number-sized arrays, and individual properties of separate instances can
be set independently as different components of each property array.

♦

PaintVar (short form: pv); int[*]
The index of a variable to paint the object with. If the object does not visualize scalar data
(for examle, a vector field), the scalar data should be compatible with the object data. The
Palette property sets the respective palette to be used on the color bar.

♦

Palette (short form: p); int[*]
Palette property takes an integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus
the index of the palette, and the palette is reversed. For example, a value of 1 will select a
traditional rainbow palette, while a value of -1 will select the rainbow palette but in the
reversed order (pink is on the left, dark blue is on the right). Finally, a value of zero will
select the special "brightness" palette, with which the object is colored by shades of its current
color, with brightness of the shade related to the value of scalar variable used to color the
object. The brightness palette cannot be reversed, and Cross Section and Volume objects
cannot be colored with a brightness palette (they do not have a regular color), so the value 0 is
ignored for them.

♦

SampleRate (short form: sr); int[*]
The factor by which the data are downsampled while the Cross Section moves across the
box. This property is only meaningful in the GUI shell.

♦

StepLevel (short form: sl); int[*]
The level the cell size of which is used for stepping the cross section. Only used in GUI shell.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

WidthAtLevel (short form: wl); int[*]
In ART extension the width of the cross sections does not have to be infinitely small.
Properties WidthInCells and WidthAtLevel specify the cross section width as a fixed
number of cells (WidthInCells) of a given level (WidthAtLevel). For example, setting this
properties to WidthInCells=3 and WidthAtLevel=5 will make the cross section width equal
to the 3 cell sizes of level 5. The value shown on the finite width cross section depends on the
WidthWeightingMode property.

♦

WidthInCells (short form: wc); int[*]
In ART extension the width of the cross sections does not have to be infinitely small.
Properties WidthInCells and WidthAtLevel specify the cross section width as a fixed

♦

3 Object Reference 3.2.7 CrossSection object

© 2005-2012 by Nick Gnedin 33

number of cells (WidthInCells) of a given level (WidthAtLevel). For example, setting this
properties to WidthInCells=3 and WidthAtLevel=5 will make the cross section width equal
to the 3 cell sizes of level 5. The value shown on the finite width cross section depends on the
WidthWeightingMode property.
WidthWeightingMode (short form: wm); int[*]
This property specifies how the data are averaged if the cross section Width is more than
zero. The value of 0 of this property specifies that there is no weighting, and the data are
simply averaged over the width of the cross section. If WidthWeightingMode>0, the value
of this property is taken to be the index of the loaded ART variable which is used for
weighting the average. It is important to note that the index refers to the loaded variable, so
the same variable may have different indecies in different data files.

♦

Child objects:

Material♦

3.2.8 Data object

Short form: d

Data is a simple collection for all supported types of data. It exists for mere convenience and to avoid
name clashes between new user-defined types and other IFrIT objects.

Available properties:

(This object has no properties.)

Child objects:

ARTBlackHoleParticles♦
ARTEddingtonTensorField♦
ARTParticles♦
ARTStellarParticles♦
ARTVariables♦
ARTVelocityField♦
GADGETBoundaryParticles♦
GADGETBulgeParticles♦
GADGETDiskParticles♦
GADGETGasParticles♦
GADGETHaloParticles♦
GADGETStellarParticles♦
NativeVTKPolyData♦
NativeVTKScalars♦
NativeVTKTensors♦
NativeVTKVectors♦
Particles♦
Scalars♦
Tensors♦

3 Object Reference 3.2.8 Data object

© 2005-2012 by Nick Gnedin 34

Vectors♦

3.2.9 DataReader object

Short form: dr

DataReader is responsible for loading data files of all types from the disk. It can also perform
calculations on scalar data.

Available properties:

BoundaryConditions (short form: bc); int
This integer property specifies the type of boundary conditions:

None (BoundaryConditions=0) implies that the bounding box has no effect and data
can extend outside it.

◊

Periodic (BoundaryConditions=1) implies that the opposite sides of the bounding
box are identical, i.e. the value of x=-1.1 is identical to x=0.9 (the size of the
bounding box is 2 in OpenGL units);

◊

Additional options for boundary conditions can be added in the future.

♦

ConvertArraysToFloat (short form: vtkca); bool
IFrIT works with scalar data in float format only. Since VTK files may contain scalar data in
different numerical formats, this boolean property, if set to true, causes all scalar data to be
converted to float.

♦

Erase (short form: e); bool(data)
A method (script function) property that erases some of the loaded data from memory. It
accepts one argument of type data idthat specifies the data type to be erased. For example,
calling this method with the argument "Tensors" will erase the built-in Tensors data.

♦

IncludeParticles (short form: hip); bool
A property that specifies how ART data files are loaded. If set to 1, then loading a variables
data file will cause loading a corresponding particle file (if it exists).

♦

IncludeVariables (short form: hiv); bool
A property that specifies how ART data files are loaded. If set to 1, then loading a particles
data file will cause loading a corresponding variables file (if it exists).

♦

Load (short form: l); bool(data , string)
A method (script function) property that loads a data file. The first argument of this function
has the type data id and specifies the data type to be loaded. For example, an argument
"Scalars" will load the built-in Scalars data. The second argument is the name of the file. If
it starts with the plus sign, the plus sign is replaced with the name of the default data directory
for this type of data file.

♦

MaxZDimension (short form: mzd); int
A limit on the size of the Z dimension of the uniform mesh data (a scalar, vector, or tensor
field data) or 0, if the limit is not set. It is useful for loading only a fraction of a large data file.

♦

PropertyIncluded (short form: gpi); bool[4]
A 4-component bool array that specifies which properties of GADGET particles are included.
The 4 components are particle id, particle mass, gas internal energy, and gas density.

♦

ROICenter (short form: hrc); vector
ART-ROICenter, ART-ROISize, and ART-ROIType properties specify the region of the
ART grid to load, where type is 0 for a cube and 1 for a sphere.

♦

ROISize (short form: hrs); double♦

3 Object Reference 3.2.9 DataReader object

© 2005-2012 by Nick Gnedin 35

See ART-ROICenter.
ROIType (short form: hrt); int
See ART-ROICenter.

♦

Reload (short form: r); bool()
Some of DataReader properties only take effect when the data are loaded. When such
properties are changed, they request DataReader to reload the appropriate data file(s). The
DataReader accumulates such requests; this method (script function) causes all accumulated
data files to be reloaded.

♦

ScalePositions (short form: vtksp); bool
Internally, IFrIT positions are kept in OpenGL coordinates that go from -1 to 1 in each
direction. If this boolean property is set to true, all positions in loaded VTK data will be
rescaled to fit into the [-1,1] cube, with axis ratios preserved.

♦

ScaledDimension (short form: sd); int
An integer value from -2 to 2, specifying which dimension (X, Y, or Z) of the uniform mesh
data (a scalar, vector, or tensor field data) to fit into the bounding box. A value of -2 means
the largest dimension, a valur of -1 means the shortest dimension, and a value between 0 and
2 means an X to Z dimension respectively. If the uniform mesh data is an exact cube, this
property has no effect.

♦

Shift (short form: s); double[3]
A three-dimensional floating point array that specifies the amounts (in units of the bounding
box size = 2) by which the data should be shifted in each of 3 dimensions relative to their
location in the data files. This is especially useful for periodic boundary conditions: it allows
to bring to the center of the view a feature which, otherwise, may be cut into several peacies
by the bounding box edges.

♦

VoxelLocation (short form: vl); int
A property specifying the location of the data on the uniform mesh. Value 0 means that the
data are point data, i.e. they are located at the vertices of the mesh; value 1 implies cell data,
which are located at the centers of mesh cells (see Cell and Point Data).

♦

3.2.10 ImageComposer object

Short form: ic

ImageComposer can combine several independent visualization windows into one output image. For
example, it can tile several windows together in a regular mesh, or place a reduced representation of
one visualization window as a insert inside another visualization window.

An example of an image composed from 3 different
visualization windows

3 Object Reference 3.2.10 ImageComposer object

© 2005-2012 by Nick Gnedin 36

Images from different visualization windows are split into background and foreground images. The
background images are tiles on a regular grid. Some of grid tiles may remain empty, or a fixed image
from an external file can placed into an empty tile. The foreground images can be scaled down and
placed anywhere in front of the background grid of tiles. Both, background and foreground images
may have borders.

If no background or foreground visualization windows are specified, then the Image Composer is
considered to be inactive (or bypassed): it will simply create an image of whatever is shown in the
current visualization window.

Available properties:

BackgroundWindowIndex (short form: bgi); int
An array with number of components equal to the number of background tiles. Each
component of the array gives an index of the visualization window whose image goes into
that tile, or 0, if that tile is empty.

♦

BackgroundWindowIndex2 (short form: bgi2); int
See BackgroundWindowIndex3.

♦

BackgroundWindowIndex3 (short form: bgi3); int
Properties BackgroundWindowIndex2 and BackgroundWindowIndex3 specify additional
visualization windows for a given tile for psedo-color composing. They are similar to
BackgroundWindowIndex property, but if more than one visualization window is specified
for a given background tile, images from multiple windows are combined in pseudo-color
single image as follows: each image is turned into a grayscale image, and then the grayscale
image from the primary window is used to specify the red channel of the combined image,
and grayscale images from windows 2 and 3 (if present) are used to provide the green and the
blue channels. If no windows 2 and 3 are specified, then normal composing is used - the
image from the primary window is displayed in the respective tile as is.

♦

BackgroundWindowWallpaperFile (short form: bgw); string
An array with number of components equal to the number of background tiles. Each
component of the array gives a name of the image file whose image goes into that tile, or an
empty string, if no image should be placed in that tile. If both, the visualization window and
the image file are specified for a tile, the visualization window takes precedence.

♦

BorderColor (short form: bc); color
The color of the border around background images. In properties colors are specified as
3-component RGB values int,int,int (like 255,0,0 for red).

♦

BorderWidth (short form: bw); int
The width (in pixels) of the border around background images.

♦

ForegroundWindowBorderColor (short form: fgc); color
An array with number of components equal to the number of foreground windows. Each
component of the array gives the color of the border for the corresponding visualization
window.

♦

ForegroundWindowBorderWidth (short form: fgw); int
An array with number of components equal to the number of foreground windows. Each
component of the array gives the width of the border (in pixels) for the corresponding
visualization window.

♦

ForegroundWindowIndex (short form: fgi); int
An array with number of components equal to the number of foreground windows. Each
component of the array gives an index of the visualization window whose image goes into
that tile. Each foreground image must have a visualization window associated with it.

♦

3 Object Reference 3.2.10 ImageComposer object

© 2005-2012 by Nick Gnedin 37

ForegroundWindowIndex2 (short form: fgi2); int
See ForegroundWindowIndex3.

♦

ForegroundWindowIndex3 (short form: fgi3); int
Properties ForegroundWindowIndex2 and ForegroundWindowIndex3 are used for
psedo-color composing in a foreground window, completely analogous to
BackgroundWindowIndex2/3 properties.

♦

ForegroundWindowPositionX (short form: fgx); int
See ForegroundWindowPositionY.

♦

ForegroundWindowPositionY (short form: fgy); int
ForegroundWindowPositionX and ForegroundWindowPositionY are two arrays with
number of components equal to the number of foreground windows. Each component of the
arrays gives the horizontal and vertical location of the lower left corner of the corresponding
foreground window in the composed image.

♦

ForegroundWindowScale (short form: fgs); float
An array with number of components equal to the number of foreground windows. Each
component of the array gives a floating point number less or eaual to 1, by which the
corresponding visualization window is scaled.

♦

ForegroundWindowZoom4Line (short form: fgz4); bool
See ForegroundWindowZoomSource.

♦

ForegroundWindowZoomFactor (short form: fgzf); float
See ForegroundWindowZoomSource.

♦

ForegroundWindowZoomSource (short form: fgz); int
Properties ForegroundWindowZoom... control the appearance of a foreground window
when it is presented as a zoom onto another window. The zoom is displayed as a frame with 2
or 4 lines reaching from the corners of the frame into the corners of the foreground window.
The property ForegroundWindowZoomSource sets the source window for the zoom: if this
value is positive, it is taken as an index of another foreground window; if it is negative, it is
taken as minus an index of a background window (background windows are numbered from
left to right and from bottom to top). A zero value for the ForegroundWindowZoomSource
property indicates that no zoom is displayed. The location and the size of the zoom frame are
controled by the ForegroundWindowZoomX, ForegroundWindowZoomY, and
ForegroundWindowZoomFactor properties. The first two set the center of the zoom frame
in units of the source window size (i.e. both change from 0 to 1), while the latter sets the scale
factor of the zoom frame relative to the original window (i.e., if the zoom is by a factor of 10,
then ForegroundWindowZoomFactor should be set to 0.1). Finally, the
ForegroundWindowZoom4Line boolean property controls whether the zoom frame is
connected to the foreground window with 2 (ForegroundWindowZoom4Line=false) or 4
(ForegroundWindowZoom4Line=true) lines.

If the zoom source and this foreground window are clones of each other, are both in parallel
projections, and the foreground window displays a portion of the source window (i.e. it is a
true zoom), then the zoom location and size will be set automatically to reflect the
relationship between the two windows. In other words, whenever the foreground window is a
true zoom onto another window, IFrIT will try to do its best to determine this relationship.

♦

ForegroundWindowZoomX (short form: fgzx); float
See ForegroundWindowZoomSource.

♦

ForegroundWindowZoomY (short form: fgzy); float
See ForegroundWindowZoomSource.

♦

ImageHeight (short form: h); int()
See ImageWidth.

♦

3 Object Reference 3.2.10 ImageComposer object

© 2005-2012 by Nick Gnedin 38

ImageWidth (short form: w); int()
ImageWidth and ImageHeight are read-only properties that give the total width and height
of the composed image, including the border. The dimensions of the image are determined by
the number of background tiles in both direction, by the size of each tile (which is taken to be
the size of the largest visualization window set as a background tile), and the width of the
border.

♦

InnerBorder (short form: ib); bool
A boolean switch specifying whether, if the background images have a border, this border
should be present between the inner sides of background tiles, or only on the outside.

♦

NumForegroundWindows (short form: nfg); int
The number of foreground windows.

♦

NumTiles (short form: nt); int[2]
The number of background tiles in two dimensions (stored as two components of this array).

♦

ScaleBackground (short form: sb); bool
A boolean switch specifying whether the background images, if they are smaller than the size
of the background tile, should be scaled or padded to the tile size.

♦

3.2.11 ImageWriter object

Short form: iw

ImageWriter is a helper object that controls how actual writing of an image or a movie (animation)
file.

Available properties:

ImageFormat (short form: f); int
The format of the image file produces. The accepted values are:

0: Portable Network Grapics(.png);◊
1: Joint Photographic Experts Group (.jpg);◊
2: Portable pixmap (.ppm);◊
3: Windows bitmap (.bmp);◊
4: Tag Image File Format (.tif);◊
5: Encapsulated Postrscript (.eps).◊

Frankly speaking, I have no idea why anyone would want all of them...

♦

ImageRootName (short form: in); string
The name of the file into which images are written; individual images are formed from that
root by adding -00001.png, -00002.png, etc (actual file extension is determined by the
ImageWriter.ImageFormat property). If the root name begins with a plus sign, files are
created in the directory specified by the environment variable IFRIT_IMAGE_DIR;
otherwise, the string is treated as a complete file name on the underlying file system. IFrIT
does not create new directories for image files, so all directories encoded in the image root
name must exist.

♦

MovieOutput (short form: mo); int
The integer-valued property that controls the final output of a movie:

0: movie is stored in a sequence of files;◊
1: movie is stored as an MPEG2 movie (if VTK is linked against MPEG2 library);◊
2: movie is stored as an AVI movie (the latter option may not be available on all
platforms).

◊

♦

3 Object Reference 3.2.11 ImageWriter object

© 2005-2012 by Nick Gnedin 39

MovieRootName (short form: mn); string
The name of the file(s) into which a movie is written. For a non-zero value of the
ImageWriter.MovieOutput property, this is the root part of the actual movie file name (i.e.
without the suffix); if ImageWriter.MovieOutput=0, then each movie frame is written into a
separate file, and the file name is constructed in the following manner: if MovieRootName
does not end with a minus sign, a directory with such name is created, and subsequent
animation files are written into that directory with names frame-00001.png, frame-00002.png,
etc (actual file extension is determined by the ImageWriter.ImageFormat property);
otherwise, MovieRootName is treated as the actual root for the file name, and individual
frames are formed from that root by adding 00001.png, 00002.png, etc. In order to avoid
accidentally overwriting a previously created animation, if a second animation is run with the
same root name, the root name will be appended with subsequent numbers 2, 3, etc. If the
root name starts with a plus sign, files are created in the directory specified by the
environment variable IFRIT_IMAGE_DIR; otherwise, the string is treated as a complete file
name on the underlying file system. IFrIT does not create new directories for movie files, so
all directories encoded in the movie root name must exist.

♦

PostScriptOrientation (short form: po); int
The orientation of the PostScript images as portrait (0) or landscape (1).

♦

PostScriptPaperFormat (short form: pf); int
The paper format for the PostScript image format. The valid values are from 0 to 10, which
select the followinf formats respectively: A0, A1, A2, A3, A4, A5, A6, A7, A8, Letter,
11x17.

♦

Write (short form: w); bool()
An action that creates an image of the current visualization scene. This is simply an alias for
Window.WriteImage.

♦

3.2.12 Label object

Short form: lb

Label object represents a file record label that displays a properly modified current record of an
animatable data file. If the curent data file is not animatable, the label is not displayed.

The specific contents of the label is controled by Name, Scale, Offset, Unit, and NumDigits
properties. Namely, the label is shown as the following equation:

name=value unit

where name and unit are strings specified by string-values properties Name and Unit, and value is the
mathematical product of the property Scale and the difference between value of the current file record
and the Offset property (value = Scale*[record-Offset]). The number of decimal places to show in the
value is set by the NumDigits property.

For example, if Name="Power", Unit="Watts", Offset=0, and Scale=0.01, then a file with the record
1234 will have a label

Power=12.34Watts

A special value Scale=0 forms a label with name "z", no unit, and the value equal to 1e4/record-1, so
that a file with the record 1234 will have a label

3 Object Reference 3.2.12 Label object

© 2005-2012 by Nick Gnedin 40

z=7.10

As you see, IFrIT remembers its origin!

Available properties:

Name (short form: n); string
A variable name to display in the file record label (see Label).

♦

NumDigits (short form: d); int
The number of digits after the decimal place to display in the file record label.

♦

Offset (short form: o); float
An offset for forming a numeric value of the label (see Label).

♦

Scale (short form: s); float
A scale for forming a numeric value of the label (see Label).

♦

Unit (short form: u); string
A string to diplay as a unit after the numeric value (see Label).

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.13 Lights object

Short form: ls

Lights object represents a collection of lights that shine on the scene. The collection consists of five
lights, a main light, a fill light, a headlight, and two auxiliary back lights. The main light is usually
positioned so that it appears like an overhead light (like the sun, or a ceiling light). It is generally
positioned to shine down on the scene from about a 45 degree angle vertically and at least a little
offset side to side. The main light usually at least about twice as bright as the total of all other lights in
the scene to provide good modeling of object features.

The other lights in the kit (the fill light, headlight, and a pair of back lights) are weaker sources that
provide extra illumination to fill in the spots that the main light misses. The fill light is usually
positioned across from or opposite from the main light (though still on the same side of the object as
the camera) in order to simulate diffuse reflections from other objects in the scene. The headlight,
always located at the position of the camera, reduces the contrast between areas lit by the main and
fill light. The two back lights, one on the left of the object as seen from the observer and one on the
right, fill on the high-contrast areas behind the object. The LightIntensity property sets the intensities
of the main, fill, and head lights. The back lights intensities are set automatically.

All lights are directional lights (infinitely far away with no falloff). Lights move with the camera. For
simplicity, the position of lights in the LightKit can only be specified using two angles: the elevation
(latitude) and azimuth (longitude) of the main light with respect to the camera, expressed in degrees.
(Lights always shine on the camera's focal point.) For example, a light at (elevation=0, azimuth=0) is
located at the camera. A light at (elevation=90, azimuth=0) is above the lookat point, shining down.
Negative azimuth values move the lights clockwise as seen above, positive values counter-clockwise.
So, a light at (elevation=45, azimuth=-20) is above and in front of the object and shining slightly from
the left side.

Available properties:

3 Object Reference 3.2.13 Lights object

© 2005-2012 by Nick Gnedin 41

Direction (short form: d); vector
A 3D vector that specifies the location of the main light in the camera reference frame. When
this direction is along the Z axis (0,0,1) the light is on top of the main camera.

♦

Intensities (short form: i); float[3]
Three intensities for the main, fill, and head lights.

♦

TwoSided (short form: ts); bool
A boolean switch that toggles one- or two-sided lighting in OpenGL.

♦

3.2.14 Marker object

Short form: m

Marker is a small resizable object that can be placed at a specified position inside the visualization
scene. It can be used simply to mark a particular point, or other visualization objects can be "attached"
to a marker. For example, markers can be used as staring points for streamlines of a vector field, or as
centers of probing surfaces. A text caption - a body of text connected to the object by a line - can be
attached to a marker to provide a short explanation. A legend listing all markers and their captions can
also be placed at the bottom of the scene. The marker caption can be moved interactively using
Marker.MoveCaption() method.

Available properties:

CaptionPosition (short form: cx); pair[*]
An array of positions of marker captions in the visualization window in viewport coordinates
(in which the visualization window ranges from 0 to 1 in each direction). Each position is a
pair of numbers x,y represented as appropriate in the used scripting language (pairs are
represented differently in different scripting languages).

♦

CaptionText (short form: ct); string[*]
An array of strings with the text of captions for all markers. The caption will be shown if the
string is non-empty.

♦

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects
except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check
descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.

♦

Delete (short form: dlt); bool(int)
A method (script function) to delete a given marker.

♦

Legend (short form: l); bool
A boolean property array that toggles whether the legend for each marker is shown or not.

♦

LegendPosition (short form: lp); int
A position on the screen of marker legends. This property takes only 2 values: 0 (for
lower-left corner) or 1 (for lower-right corner).

♦

MoveCaptions (short form: mc); bool()
Calling this method puts the current visualization window into a Caption Move mode. In that
mode the mouse interaction with the visualization scene is disabled. The only mouse
interaction that is allowed is to click on the marker caption and drag it around the screen. To

♦

3 Object Reference 3.2.14 Marker object

© 2005-2012 by Nick Gnedin 42

exit the caption Move mode, click anywhere outside a marker caption.
New (short form: new); bool()
A method (script function) to create a new marker. The newly created marker will be initially
identical to the last one.

♦

Number (short form: num); int
The number of markers in the scene. All marker properties become Number-sized arrays, and
individual properties of separate markers can be set independently as different components of
each property array.

♦

Opacity (short form: o); float[*]
See Color.

♦

Position (short form: x); vector[*]
A position of a marker in the visualization scene.

♦

Scaled (short form: sc); bool[*]
A boolean property that controls whether the marker is scaled during the scene interaction so
that its aparent size remains the same, or behaves as all other objects - unscaled marker will
become larger/smaller if the scene is zoomed in/out.

♦

Size (short form: s); double[*]
The size of the marker.

♦

TransparentCaptions (short form: tc); bool
A boolean property that toggles the transparency of marker captions.

♦

Type (short form: t); int[*]
The type of the marker. The following values are available:

0: Point◊
1: Sphere◊
2: Tetrahydron◊
3: Cube◊
4: Octahedron◊
5: Icosahedron◊
6: Dodecahedron◊
7: Cone◊
8: Cylinder◊
9: Arrow◊
10: Cluster (a cloud of points)◊
11: Galaxy◊

♦

Child objects:

Material♦

3.2.15 Material object

Short form: _mat

A Material object is a helper object that provides access to rarely used parameters that control four
OpenGL material properties: Ambient, Diffuse, Specular, and SpecularPower (also called shininess
in some OpenGL books). They all take a floating-point value between 0 and 1. You need to know
how OpenGL handles material properties to understand what these values mean. Most likely, you will
never find a need to use them.

3 Object Reference 3.2.15 Material object

© 2005-2012 by Nick Gnedin 43

Available properties:

Ambient (short form: a); float
See Material.

♦

Diffuse (short form: d); float
See Material.

♦

ShadingMode (short form: sm); int
If the shading mode is -1 then shading is always off (so that an object looks the same no
matter what its orientation relative to lights and a camera is), if it is +1 then shading is always
on, and a value of 0 implies "automatic" shading, i.e. the object owning the material decides
when it needs shading and when it does not. The automatic choice is normally good enough.

♦

Specular (short form: s); float
See Material.

♦

SpecularPower (short form: p); float
See Material.

♦

3.2.16 MeasuringBox object

Short form: mb

A Measuring Box object is a semi-transparent cube that is always placed at the focal point of the
camera. Its size can be adjusted, and is always displayed on the screen, so the size of features that fit
into the box are always known.

Available properties:

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.17 Palette object

Short form: pal

Palette objects represents palettes used by IFrIT.

Available properties:

Blue (short form: b); pair[*]
Array properties Red, Green, and Blue specify piecewise-linear functions to use for the three
respective color ramps. Each piecewise-linear function is an array of pairs of numbers
(represented as appropriate in the used scripting language - pairs are represented differently in
different scripting languages) that give x,y values for each point along the piecewise-linear
function.

♦

Green (short form: g); pair[*]
See Blue.

♦

Name (short form: n); string
A string-valued name for the palette.

♦

3 Object Reference 3.2.16 MeasuringBox object

© 2005-2012 by Nick Gnedin 44

New (short form: new); bool()
This method adds an empty, unnamed palette, to the list of the available palettes.

♦

Number (short form: num); int
The number of instances (existing independent realizations) of this object. This property is
different from any other property in that it cannot be set, i.e. an assignment to it will fail, so it
can only be used for checking the number of instances of a particular object.

♦

Red (short form: r); pair[*]
See Blue.

♦

3.2.18 Particles object

Short form: p

Particles object represents a collection of particles (points) and associated with them variables (or
variables - for example, mass, size, etc). The set of particles consists of one or more independent
subsets called groups. Each group is controlled indepedently, particles within each group can be
connected with lines to, for example, represent trajectories. Particles in different groups can have
different representation (dots, spheres, etc), color, size, they can be colored or sized according to
values of one of the variables. Properties of a particular group are stored as corresponding
components of arrays-valued Particles properties. For example, the representation type of group #2 is
referenced as Particles.Type[2] property. Groups can be created when particle data have one or more
variables. One of the variable (set with the SplitVar property) is used for splitting particles into
group: all particles within one group have the value of the variable with the index SplitVar within a
given range. Since ranges of different groups may overlap, a given particle may belong to more than
one group. The ranges for the data[SplitVar] for each group are set with the array-values property
SplitRanges property. Each range is set by a pair of values that give min,max values for each range
(pairs are represented differently in different scripting languages). For example, the assignment in
Python

Particles.SplitRanges = ((0,0.5),(0.3,0.9))

creates two groups, the first one containing particles for which data[SplitVar] is between 0 and 0.5,
and the second one with data[SplitVar] between 0.3 and 0.9 (and so particles with values between
0.3 and 0.5 belong to both groups). After that statement, all array-valued particle properties (like
Particles.Type) become 2-element array. If, now, SplitRanges is reassigned,

Particles.SplitRanges = ((-3,2),(2.5,4),(9,11))

all array-valued properties automatically become 3-element arrays. Setting SplitVar to -1 will place
all particles into a single and only group.

Available properties:

AutoScaled (short form: au); bool[*]
If this boolean property is set to true, IFrIT will scale the particles automatically so that their
size appear to be fixed when the scene is zoomed in or out. That requires a re-calculation of
particle properties and may be slow.

♦

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects

♦

3 Object Reference 3.2.17 Palette object

© 2005-2012 by Nick Gnedin 45

except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check
descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.
ConnectVar (short form: cv); int[*]
Particles in a group can be connected by lines. This array-valued property specifies the
variables that determines the order by which particles are connected for each group. If this
property is set to -1, no particles are connected; otherwise, particles are connected by lines in
the increasing order of the variable with index ConnectVar. For example, if there are 3
particles with variable[ConnectVar] values of 3, 1, and 2, then the particle #2 will be
connected to the particle #3 and that one will be connected to the particle #1.

♦

ConnectionBreakVar (short form: cbv); int[*]
If ConnectVar property is set to a valid index of a particle variable, all particles are
connected by a single line in the increasing order of the variable with the index ConnectVar.
To show more than 1 line, particles must have another variable, and the
ConnectionBreakVar property should be set to that variable index. Then only particles
having the same value of data[ConnectionBreakVar] are connected. For example, if there
are 4 particles with 2 variables each, (1,1), (2,1), (4,2), and (6,2), and ConnectVar and
ConnectionBreakVar=1, then the particle #1 will be connected to the particle #2 and the
particle #3 will be connected to the particle #4 (increasing order of data[ConnectVar, the
same value of data[ConnectionBreakVar]), but the particle #2 will not be connected to the
particle #3, since they have different values of ConnectionBreakVar.

♦

FixedSize (short form: s); float[*]
The basic size of all particles (see ScaleVar property for the description of particle sizing).

♦

LineWidth (short form: lw); int[*]
The width of the line that connects particles, if they connected with lines

♦

Opacity (short form: o); float[*]
See Color.

♦

PaintVar (short form: pv); int[*]
The index of a variable to paint the object with. If the object does not visualize scalar data
(for examle, a vector field), the scalar data should be compatible with the object data. The
Palette property sets the respective palette to be used on the color bar.

♦

Palette (short form: p); int[*]
Palette property takes an integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus
the index of the palette, and the palette is reversed. For example, a value of 1 will select a
traditional rainbow palette, while a value of -1 will select the rainbow palette but in the
reversed order (pink is on the left, dark blue is on the right). Finally, a value of zero will
select the special "brightness" palette, with which the object is colored by shades of its current
color, with brightness of the shade related to the value of scalar variable used to color the
object. The brightness palette cannot be reversed, and Cross Section and Volume objects
cannot be colored with a brightness palette (they do not have a regular color), so the value 0 is
ignored for them.

♦

RenderSortVar (short form: rsv); int
This is a special variable index that, if set, changes the order by which particles are rendered.
By default in OpenGL, particles are plotted from back to front in the order of their distance
from the camera (we call this true rendering). This property causes the particles to be ordered
by the increasing value of the variable. If the variable index is not -1, this option will disable
true rendering (by setting the property Window:TrueRendering to false) and will also
disable splitting particles by pieces.

♦

3 Object Reference 3.2.18 Particles object

© 2005-2012 by Nick Gnedin 46

ReplicationFactors (short form: rf); int[6]
Some of visualization objects can be replicated, i.e. their identical replicas placed outside the
bounding box. This 6-dimensional integer property specifies how many replicas should be
placed in -X, +X, -Y, +Y, -Z, and +Z directions, respectively. This property only has effect if
the data are periodic in at least some of the directions, and if the object can be replicated (not
all visualizationw objects are replicatable).

♦

ScaleFactor (short form: sf); float[*]
An additional factor used to scale particle (i.e. the particle size = ScaleFactor times the value
of variable with the index ScaleVar.

♦

ScaleVar (short form: sv); int[*]
The index of the particle variable used to scale particles in different groups. Sizes of
individual particles are determined by the product of the value of the data[ScaleVar] and an
additional factor ScaleFactor), i.e. for each particle size = ScaleFactor*data[ScaleVar].
If ScaleVar is -1, all particles have the same fixed size set by the property FixedSize.
However, keep in mind that particles can be sized differently only if they are not represented
by points. Points cannot be sized differentially in OpenGL.

♦

SplitRanges (short form: r); pair[*]
An array property that sets the range of the values of data[SplitVar] that belong to a
particular group (see description of the Particles object for the explanation on particle
groups).

♦

SplitRangesTiled (short form: rt); bool
If this boolean property is set, the ranges of separate particle groups are always adjoint
("tiled"), i.e. the max value for the group range of group N is always kept equal to the min
value for the group range N+1. For example, the assignment (using Python as scripting
language)

Particles:SplitRanges[2] = (1,2)

automatically changes the max range value of group #1 to 1 and the min range value of group
#3 to 2. This is useful for making sure that every particle always belongs to exactly one
group.

♦

SplitVar (short form: v); int
The index of the particle variable used in splitting Particles into separate groups. All particles
within one group have the value of data[SplitVar] within the given range.

♦

Type (short form: t); int[*]
The representation of individual particles in a given group. The values of this property are the
same as Marker.Type. Points are the fastest to show, but they cannot be sized differentially
in OpenGL. If you need to size particles differentially, the fastest type to use is tetrahydron.
Spheres are always the slowest type to visualize.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3 Object Reference 3.2.18 Particles object

© 2005-2012 by Nick Gnedin 47

3.2.19 Picker object

Short form: pi

Picker allows the user to "pick" an object in the visualization scene, and obtain information about the
data at the picked location. Picking is activated by pointing the cursor to the desired location and
pressing a key P on the keyboard. IFrIT then follows an imaginary line drawn through the cursor
position, and finds the visualization objects that the line intersects. The information about the location
of the intersection and properties of the visualization objects is then reported.

Picker operates in one of three modes:

Cell mode is the slowest, but it is most intuitive. In this mode Picker picks a "cell" that first
intersects the line of sight. For an OpenGL polygonal mesh the cell is a polygon of the mesh,
for volume rendering, the cell is a cell in the volume, for particles a cell is a single particle -
in the latter case the size of the cell is zero, so it is often ambigious to pick, the Point mode is
best for picking particles.

♦

Point mode is also slow, and is best suited for picking Particles. It is important to keep in
mind that IFrIT only picks an OpenGL point, which may or may not have any relation to the
underlying data structure. For example, if IFrIT picks a point on the isosurface, the point most
likely will not correspond to any vertex of the undelying grid. In addition, for a solid object
(i.e. object consisting of the polygonal OpenGL mesh), only a vertex of a polygon can be
picked. Thus, it is possible that you point the cursor on the solid surface, but nothing gets
picked, because all polygon vertices are too far from the imaginary line. In that case, either
use a Cell mode, or adjust the Accuracy property to reduce the maximum distance from the
line-of-sight.

♦

Object mode is fast, because in this mode IFrIT uses the hardware to pick an object.
However, the hardware picker may not pick translucent (non-opaque) objects correctly.

♦

Available properties:

Accuracy (short form: a); float
The distance (tolerance) within which the Picker will search for the nearest point or cell. If
this distance is too small, Picker may not find even one point or cell to pick. If this distance is
too large, the picked point may be too far from the cursor position, and may not be the point
you intended to pick. Adjust this parameter to get the best results for you data. This property
has no effect in the Object mode.

♦

PickMethod (short form: m); int
The picker mode: 0 is for Cell mode, 1 is for Point mode, and 2 is for Object mode.

♦

PointSize (short form: ps); float
The size of the point the Picker places at the picked position, in OpenGL coordinates (the
length of the bounding box is 2).

♦

Position (short form: x); vector()
The last picked position, returned as a 3D vector.

♦

3.2.20 Ruler object

Short form: rl

3 Object Reference 3.2.19 Picker object

© 2005-2012 by Nick Gnedin 48

A Ruler is an object displayed on top of the visualization window. The ruler is only visible in the
parallel projection, because in the perspective projections the same distance projects on the screen
differently depending on its location in the scene.

Available properties:

Scale (short form: s); float
The scale shown on the ruler. The scene will be zoomed in/out appropriatey to maintain
consistency between the scale of the scene and the value shown on the ruler.

♦

Title (short form: t); string
The title shown on top of the ruler. By default, there is no title.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

3.2.21 Surface object

Short form: s

Surface object represents a two-dimensional surface that samples the three-dimensional scalar data.
The surface can be either an isosurface of a particular scalar variable, or a specified geometric shape
like a sphere or a plane. A surface can be painted by varied colors that correspond to a value of one of
scalar variables via a specified palette. Multiple instances of a Surface object can co-exist at the same
time - for example, several isosurfaces corresponding to different values of a scalar variable can be
used to represent the three-dimensional structure of the data.

Because a surface has two sides, IFrIT uses the following rule to determine which side is called
"outside" and which is called "inside" for an isosurface:

For the first variable the outside side is the side where the value of the variable is larger than
the level of the isosurface.

1.

For the second and the third variables the outside side is the side where the value of the
variable is smaller than the level of the isosurface.

2.

It might help you to put more meaning in the words "inside" and "outside" for your isosurface by
appropriately ordering variables in the data file.

Available properties:

AlternativeReductionMethod (short form: rda); bool[*]
If this property is set to 1, an alternative method for reducing the number of polygons in the
isosurface will be used. Smetimes, the alternative method may be faster or may produce better
results.

♦

CellToPointMode (short form: cpm); int[*]
The method for converting ART cell data into point data. The two methods currently
supported are the average of the 8 neighbors (0) or the median of the 8 neighbors (1).

♦

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects
except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check

♦

3 Object Reference 3.2.20 Ruler object

© 2005-2012 by Nick Gnedin 49

descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.
Delete (short form: dlt); bool(int)
A method (script function) to delete a given instance of this object.

♦

GradientNormals (short form: gn); bool[*]
A boolean switch that sets whether the normals to the isosurface are computed as the
gradients of the isosurface field, rather than as geometric normals of the polygons making the
surface.

♦

IsoLevel (short form: l); float[*]
The value for the isosurface level in the isosurface mode.

♦

IsoMethod (short form: im); int[*]
A method for creating the isosurface. The IsoSurfaceMethod=1 selects a commonly used
Marching Cubes method, but it may not be available in all versions of VTK. A value of
IsoSurfaceMethod=0 selects an alternative method, which may vary from one VTK version
to another. Method 0 should always work, while method 1 may not always work due to VTK
bugs. IFrIT attempts to choose the best method as a default setting.

♦

IsoOptimization (short form: op); bool[*]
A boolean property that toggles whether the isosurface is optimized after construction.
Optimizing the isosurface takes time, but the optimized isosurface will render faster. Setting
this property to true only makes sense if you plan to send long time working with a given
isosurface.

♦

IsoReduction (short form: rd); int[*]
The level of reduction in the number of polygons that represent the isosurface. This property
takes values from 0 to 3: value 0 means no reduction, 1 attempts to reduce by 75%, 2 by 90%,
and 3 by 99%. Reduction does not change the topology of the isosurface (at least, should not),
so the target level may not be achievable in practice.

♦

IsoSmoothing (short form: sm); int[*]
The integer factor from 0 to 10 that controls the degree of additional smoothing for the
isosurface. The value of zero switches smoothing off. Smoothing an isosurface takes time, but
makes it look better.

♦

IsoVar (short form: v); int[*]
The index of the scalar variable whose isosurface is created.

♦

MaxLevel (short form: maxl); int
The maximum level of the mesh to use for rendering the surface.

♦

Method (short form: m); int[*]
Specifies the method for creating the surface. Three methods are currently supported:

0: isosurface of the scalar variable with index IsoSurfaceVar at the value
IsoSurfaceLevel,

◊

1: sphere of radius SphereSize at the position Position,◊
2: plane with normal PlaneDirection at the position Position.◊

♦

New (short form: new); bool()
A method (script function) to create a new instances of this object. The newly created
instance will be initially identical to the last one.

♦

NormalsFlipped (short form: nf); bool[*]
This boolean property, if set to true, reverses the direction of normals (i.e. the sense of
inside-outside for the surface) relative to the default settings.

♦

Number (short form: num); int
The number of instances (independent screen representations) of this object. All properties of
the object become Number-sized arrays, and individual properties of separate instances can
be set independently as different components of each property array.

♦

3 Object Reference 3.2.21 Surface object

© 2005-2012 by Nick Gnedin 50

Opacity (short form: o); float[*]
See Color.

♦

PaintVar (short form: pv); int[*]
The index of a variable to paint the object with. If the object does not visualize scalar data
(for examle, a vector field), the scalar data should be compatible with the object data. The
Palette property sets the respective palette to be used on the color bar.

♦

Palette (short form: p); int[*]
Palette property takes an integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus
the index of the palette, and the palette is reversed. For example, a value of 1 will select a
traditional rainbow palette, while a value of -1 will select the rainbow palette but in the
reversed order (pink is on the left, dark blue is on the right). Finally, a value of zero will
select the special "brightness" palette, with which the object is colored by shades of its current
color, with brightness of the shade related to the value of scalar variable used to color the
object. The brightness palette cannot be reversed, and Cross Section and Volume objects
cannot be colored with a brightness palette (they do not have a regular color), so the value 0 is
ignored for them.

♦

PlaneDirection (short form: pd); vector[*]
The direction (specified as a 3-component double array) of the surface in plane mode.

♦

PolishLevel (short form: pl); int[*]
This an internal property for further development.

♦

Position (short form: x); vector[*]
The position of the sphere or the plane in the sphere and plane modes.

♦

ReplicationFactors (short form: rf); int[6]
Some of visualization objects can be replicated, i.e. their identical replicas placed outside the
bounding box. This 6-dimensional integer property specifies how many replicas should be
placed in -X, +X, -Y, +Y, -Z, and +Z directions, respectively. This property only has effect if
the data are periodic in at least some of the directions, and if the object can be replicated (not
all visualizationw objects are replicatable).

♦

SphereSize (short form: ss); double[*]
The radius of the sphere in the sphere mode.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3.2.22 TensorField object

Short form: t

TensorField object represents a tensor field. Currently, the only supported method for tensor field
visualization is a "tensor glyph": a collection of ellipsods, which, at every point is oriented along the
eigenvectors of the tensor and (optionally) scaled in proportion to tensor eigenvalues.

Available properties:

3 Object Reference 3.2.22 TensorField object

© 2005-2012 by Nick Gnedin 51

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects
except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check
descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.

♦

GlyphSampleRate (short form: gr); int[*]
This property accepts integer positive numbers that specify the sub-sampling rate for the
object. If this property is set to 1, every point in the data will be shown. For values larger than
1, only every GlyphSampleRate value in every direction will be shown.

♦

GlyphSize (short form: gs); float[*]
The uniform size to scale all glyphs with.

♦

GlyphType (short form: gt); int[*]
A geometric representation for the glyph. Currently, only 2 types are supported: 0 is for cubes
and 1 is for spheres, and spheres will take much longer to render than cubes.

♦

IsConnectedToScalars (short form: cs); bool()
A boolean query (script function with no argumnets) returning whether the object can be
colored by a scalar variables. If this function returns false, setting PaintVar property will
have no effect.

♦

MaxLevel (short form: maxl); int
MaxLevel and MinLevel properties specify the range of mesh levels to show.

♦

Method (short form: m); int[*]
This property is reserved for future use. Currently, only one methd - tensor glyph - is
supported.

♦

MinLevel (short form: minl); int
See MaxLevel.

♦

Opacity (short form: o); float[*]
See Color.

♦

PaintVar (short form: pv); int[*]
The index of a variable to paint the object with. If the object does not visualize scalar data
(for examle, a vector field), the scalar data should be compatible with the object data. The
Palette property sets the respective palette to be used on the color bar.

♦

Palette (short form: p); int[*]
Palette property takes an integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus
the index of the palette, and the palette is reversed. For example, a value of 1 will select a
traditional rainbow palette, while a value of -1 will select the rainbow palette but in the
reversed order (pink is on the left, dark blue is on the right). Finally, a value of zero will
select the special "brightness" palette, with which the object is colored by shades of its current
color, with brightness of the shade related to the value of scalar variable used to color the
object. The brightness palette cannot be reversed, and Cross Section and Volume objects
cannot be colored with a brightness palette (they do not have a regular color), so the value 0 is
ignored for them.

♦

ReplicationFactors (short form: rf); int[6]
Some of visualization objects can be replicated, i.e. their identical replicas placed outside the
bounding box. This 6-dimensional integer property specifies how many replicas should be
placed in -X, +X, -Y, +Y, -Z, and +Z directions, respectively. This property only has effect if
the data are periodic in at least some of the directions, and if the object can be replicated (not
all visualizationw objects are replicatable).

♦

3 Object Reference 3.2.22 TensorField object

© 2005-2012 by Nick Gnedin 52

Scaling (short form: s); bool[*]
A boolean property that specifies whether the tensor glyphs should be scaled by the tensor
eigenvalues. If it is false, all glyphs will have the same volume, but different shapes and
orientations.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3.2.23 VectorField object

Short form: u

VectorField object represents a vector field, like the flow of the fluid. A vector field can be
represented as a "vector glyph" - a set of straight lines pointing in the direction of the vector field at
every point with lengths proportional to the magnitude of the vector, or as a collection of stream lines
- lines which would correspond to the fluid flow lines if the vector field was a real fluid velocity field.
Streamlines originate at a source object, which can be a plane, a sphere, a disk, or a all existing
Markers.

Available properties:

Color (short form: c); color[*]
Properties Color and Opacity set these two properties for visualization objects, which are
represented as solid surfaces (OpenGL polygonal mesh) - which are all visualization objects
except the Volume object. These two properties can be either scalar (1-component) or arrays
(multi-component), depending on the type of the visualization objects they belong to (check
descriptions for specific objects for more details). The Color property takes a 3-component
RGB value int,int,int (like 255,0,0 for red). The Opacity properties takes a floating point
number between 0 and 1.

♦

GlyphBaseSize (short form: gbs); int[*]
Since vector glyphs have no directiona sense, the base of the can be labeled by a point. That
property specifies the point size. Just keep in mind that if the point size is smaller than the
width of the glyph line, it will not be clearly visible.

♦

GlyphSampleRate (short form: gr); int[*]
This property accepts integer positive numbers that specify the sub-sampling rate for the
object. If this property is set to 1, every point in the data will be shown. For values larger than
1, only every GlyphSampleRate value in every direction will be shown.

♦

GlyphSize (short form: gs); float[*]
The uniform size to scale all glyphs with.

♦

IsConnectedToScalars (short form: cs); bool()
A boolean query (script function with no argumnets) returning whether the object can be
colored by a scalar variables. If this function returns false, setting PaintVar property will
have no effect.

♦

LineDirection (short form: ld); int[*]
The direction of the streamlines relative to the source. The following values are accepted:

♦

3 Object Reference 3.2.23 VectorField object

© 2005-2012 by Nick Gnedin 53

0: the up-stream direction (the direction the vector field points to);◊
1: the down-stream direction (the direction opposite to the one the vector field points
to);

◊

2: the forward direction (the direction of increasing coordinate);◊
3: the backward direction (the direction of decreasing coordinate);◊
4: both directions (the streamline is drawn from both sides of the source object).◊

LineLength (short form: ll); float[*]
The maximum length for the streamline to draw.

♦

LineQuality (short form: lq); int[*]
The quality of the streamline. If the value of this property is zero, the streamline may appear
"jaggy". Positive values of this property make the streamline smoother, at the expense of
longer rendering time.

♦

LineWidth (short form: lw); int[*]
The width of the line representations: the glyph and the stream lines.

♦

MaxLevel (short form: maxl); int
MaxLevel and MinLevel properties specify the range of mesh levels to show.

♦

Method (short form: m); int[*]
The following modes for visualizing the vector field are supported:

Glyph (0): a set of straight lines pointing in the direction of the vector field at every
point with lengths proportional to the magnitude of the vector;

◊

Stream line (1): a set of lines, which would correspond to the fluid flow lines if the
vector field was a real fluid velocity field;

◊

Stream tube (2): a stream line that has a finite thickness that varies according to the
flow speed (as if the mass flow is conserved);

◊

Stream band (3): a pair of nearby stream lines with the surface between them. This
is useful to visualize diverging or converging flows.

◊

In the last three modes, streamlines are

♦

MinLevel (short form: minl); int
See MaxLevel.

♦

NumberOfStreamLines (short form: nl); int[*]
The number of streamlines to generate. If the source object is Markers, then this property has
no effect, as the number of streamlines is equal to the number of available markers.

♦

Opacity (short form: o); float[*]
See Color.

♦

PaintVar (short form: pv); int[*]
The index of a variable to paint the object with. If the object does not visualize scalar data
(for examle, a vector field), the scalar data should be compatible with the object data. The
Palette property sets the respective palette to be used on the color bar.

♦

Palette (short form: p); int[*]
Palette property takes an integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus
the index of the palette, and the palette is reversed. For example, a value of 1 will select a
traditional rainbow palette, while a value of -1 will select the rainbow palette but in the
reversed order (pink is on the left, dark blue is on the right). Finally, a value of zero will
select the special "brightness" palette, with which the object is colored by shades of its current
color, with brightness of the shade related to the value of scalar variable used to color the
object. The brightness palette cannot be reversed, and Cross Section and Volume objects
cannot be colored with a brightness palette (they do not have a regular color), so the value 0 is
ignored for them.

♦

ReplicationFactors (short form: rf); int[6]
Some of visualization objects can be replicated, i.e. their identical replicas placed outside the

♦

3 Object Reference 3.2.23 VectorField object

© 2005-2012 by Nick Gnedin 54

bounding box. This 6-dimensional integer property specifies how many replicas should be
placed in -X, +X, -Y, +Y, -Z, and +Z directions, respectively. This property only has effect if
the data are periodic in at least some of the directions, and if the object can be replicated (not
all visualizationw objects are replicatable).
ShowSourceObject (short form: sso); bool[*]
A boolean property that toggles whether the source object is shown in the visualization scene.

♦

SourceDirection (short form: sd); vector[*]
The direction (specified as a 3-component double array) of the streamline source object when
it is a plane or a disk.

♦

SourceOpacity (short form: so); float[*]
The opacity of the streamline source object (between 0 and 1), if it is shown.

♦

SourcePosition (short form: sx); vector[*]
The position of the streamline source object.

♦

SourceSize (short form: ss); double[*]
The size of the streamline source if it is a disk or a sphere.

♦

SourceType (short form: st); int[*]
The type of a geometric shape of the streamline source object:

0: disk;◊
1: plane;◊
2: size.◊

The size of the disk or the sphere is set by the SourceSize property, the orientation of the disk
or the plane is set by the SourceDirection property, and the center of the source object is set
by the SourcePosition propery.

♦

TubeRangeFactor (short form: tr); float[*]
TubeSize, TubeRangeFactor, and TubeVariationFactor control the shape of streamtubes.
The TubeSize property sets the minimum diameter of the tube; all linear scales in the tube are
proportional to the value of this property. The TubeRangeFactor property is the ratio of the
maximum to the minimum sizes of the tube. The TubeVariationFactor determines how
sensitive the size of the tube is to the value of the vector field visualized. It may take some
experimentation with these three parameters to achieve a satisfactory-looking tubes for your
data.

♦

TubeSize (short form: ts); int[*]
See TubeRangeFactor.

♦

TubeVariationFactor (short form: tv); float[*]
See TubeRangeFactor.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3.2.24 Volume object

Short form: v

Volume object uses the volume rendering method to represent the full three-dimensional structure of
the data. Several methods for volume rendering are available.

3 Object Reference 3.2.24 Volume object

© 2005-2012 by Nick Gnedin 55

Available properties:

AllMethods (short form: am); string()
This function returns all methods supported by this objects. Methods may differ for different
extentsions.

♦

BlendMode (short form: bm); int[*]
The Blend Mode is only meaningful for the Raycast and VolumePro methods. It accepts two
values:

0: composite mode, when all values along a line-of-sight direction are composed
together depending on the opacity function;

◊

1: "maximum intensity" mode, when the maximum value along a line-of-sight
direction is used to represent the opacity along the line-of-sight.

◊

♦

DepthDownsampleFactor (short form: dd); float[*]
See ImageDownsampleFactor.

♦

ExtendOcts (short form: heo); bool[*]
When using the 2D texture method, the volume rendering by default uses only 4 textures for 8
cells in each oct. If this parameter is set to true, IFrIT will use 8 textures, achieving a better
depth effect at the expense of using twice more texture memory.

♦

Force2DTextures (short form: hf2d); bool[*]
This parameter forces the use of 2D textures for uniform rebinning mode.

♦

ImageDownsampleFactor (short form: di); float[*]
Properties ImageDownsampleFactor and DepthDownsampleFactor specify downsampling
factors in the plane of the screen and along the line-of-sight respectively. Both factors can be
less than 1, which would imply super-sampling rather than down-sampling. These properties
are not supported by all methods.

♦

InterpolationType (short form: it); int[*]
The value of 0 sets the nearest neighbor interpolation; the value of 1 switches to linear
interpolation.

♦

MaxLevel (short form: maxl); int
The maximum level to use in volume rendering.

♦

Method (short form: m); string[*]
Specifies the method for volume rendering. VTK provides several different methods, and
different versions of VTK and different installations may or may not include all methods;
IFrIT extensions may have their own sets of volume rendering methods. A specific method
can be specified either by the Method property that accepts one of the following method
names, or by the integer MethodId value:

Ray casting method computes volume properties along rays cast from every point on
the screne into the volume; rendering is done in software, and is slow for large data
sets.

◊

Fixed point ray casting is an alternative software ray casting method. It is often
faster than traditional ray casting.

◊

2D textures method replaces the volume with a set of semi-transparent textures; this
can be fast for medium-size volumes and high quality videocards, although the
quality of rendering is usually worse then in the Ray Casting method; this method is
not suitable for volumes with less than about 30x30x30 cells.

◊

3D textures method uses 3-dimensional textures, similar to 2D textures, except the
visual quality is usually much higher even for small volumes. It is also often faster
that 2D textures. This method is only available if your hardware supports it - not all
videocards can handle 3D textures, but most of the most recent ones can.

◊

GPU ray casting uses the Graphic Processing Unit (GPU) board (if available). If
your computer has a GPU, this is likely to be the fastest and the highest quality

◊

♦

3 Object Reference 3.2.24 Volume object

© 2005-2012 by Nick Gnedin 56

method.
VolumePro board method uses the VolumePro 1000 hardware volume rendering
board; you need to have this expensive board to use this method.

◊

MethodId (short form: mid); int[*]
See Method.

♦

OpacityFunction (short form: of); pair[*]
The piece-wise function that specifies the opacity of a cell as a function of the variable value
in the cell. The opacity function is specified in the same way as any of the Palette
components.

♦

OpacityScaleFactor (short form: os); float[*]
The extra factor by which the volume opacity is scaled - large values make the volume less
transparent.

♦

Palette (short form: p); int[*]
The palette to render the volume with.

♦

QualityLevel (short form: hq); int[*]
The quality of uniform rebinning mapping: from low (0) to high (2).

♦

ReplicationFactors (short form: rf); int[6]
Some of visualization objects can be replicated, i.e. their identical replicas placed outside the
bounding box. This 6-dimensional integer property specifies how many replicas should be
placed in -X, +X, -Y, +Y, -Z, and +Z directions, respectively. This property only has effect if
the data are periodic in at least some of the directions, and if the object can be replicated (not
all visualizationw objects are replicatable).

♦

ScaleFactor (short form: hsf); float[*]
The scale factor for the uniform rebinning volume. By default, IFrIT chooses the volume for
uniform rebinning that just fits into the camera frustrum.

♦

SmoothTextures (short form: hst); bool[*]
This parameter toggles smoothing texture edges for the 2D texture method. May take up to 4
times more texture memory, though.

♦

UniformOpacity (short form: huo); bool[*]
Because the dynamic range of ART data can easily be much more than the maximum
dynamic range achieved with 1 byte OpenGL opacities (about 1410 = ln(1/255)/ln(254/255)),
using standard uniform opacities for 2D texture mapping can produce an empty scene. By
default IFrIT does not scale opacities by the cell size, to circumvent this problem - this is
roughly equivalent to "density weighting", when small (and, presumably, dense) cells receive
larger weight. If you set this boolean property to true, IFrIT will use standard unifrm
opacities for all cells.

♦

Var (short form: v); int[*]
The index of the scalar variable to do the volume rendering of.

♦

Visible (short form: vis); bool
A boolean property that toggles whether the object is visible in the visualization scene.

♦

Child objects:

Material♦

3.2.25 Window object

Short form: w

3 Object Reference 3.2.25 Window object

© 2005-2012 by Nick Gnedin 57

The Window object is a single visualization window that displays the whole scene. Several Window
objects can exist, and can either be independent, or be "clones" of another Window. In the latter case
they share the data with the "parent" window but in all other respects behave as separate windows.The
Window object is directly responsible for showing the Bounding Box, Record Label, Clipping
Plane, and several other controls, but it delegates visualization of the data to its sub-objects:
CrossSection, Surface, Volume, Particles, VectorField, and TensorField.

Available properties:

Antialiasing (short form: aa); bool[3]
A boolean property that toggles OpenGL antialiasing in the scene. The property is a vector of
dimension 3, for antialiasing separate components of the rendered scene: points, lines, and
polygons.

♦

BackgroundColor (short form: bg); color
The background color of the scene, specified as a 3-component RGB value int,int,int (like
255,255,255 for white).

♦

BackgroundImage (short form: bi); string
If this property is assigned a name of an existing image file, the image from the file will be
used as a background for the visualization scene (instead of a fixed color background set by
BackgroundColor property). To revert to a fixed color background, assign an empty string to
this property. Notice, that rendering a scene with an image in the background is much slower
than a scene with a fixed color background.

♦

BackgroundImageFixedAspect (short form: bia); bool
A boolean property that determines whether the aspect ratio of a background image is
preserved; if set to 0, the image will be scaled to fill in the current window.

♦

BoxSize (short form: bs); float
The size of the Bounding Box in physical units. Changing this property does not actually
change the visualization scene and it does not affect the relation of objects with respect to
each other, but it useful for assigning physical meaning to the distances in the scene. If Box
Size is set to 0, then the default OpenGL coordinate system is used: coordinates within the
bounding box go from -1 to 1 in each of the 3 directions; the center of the bounding box is at
(0,0,0), and the linear size of the bounding box is 2. If Box Size is positive, coordinates go
from 0 to the value of the Box Size in all 3 directions.

♦

CameraAlignmentLabel (short form: ca); bool
A boolean property that toggles showing of coordinate axis when the came orientation is
orthogonal, i.e. the direction of viewing and the view up vector are both parallel to coordinate
axes. This is useful when visualizing Cross Section objects.

♦

Clone (short form: clone); bool(int)
This method clones the current window (i.e., creates a new window that shares the data with
the current one).

♦

CloneOfWindow (short form: co); int
A method (script function) that returns the index of the parent window if this Window object
is a clone of another one, or 0 if it is not a clone.

♦

Copy (short form: copy); bool(int)
This method creates a new window and copies all the settings from the current window to the
newly created one.

♦

CurrentInteractorStyle (short form: is); int
The style of the visualization window interactor, i.e. the component that control how mouse
clicks and keyboard keys are affect the visualization scene. IfrIT uses four different interactor
styles:

♦

3 Object Reference 3.2.25 Window object

© 2005-2012 by Nick Gnedin 58

0 or 1: use Display mode described in Mouse and Keyboard Controls. The difference
between values 0 and 1 is that the value 0 uses a trackball method of interaction,
when you need to click on a mouse button and move the mouse to change the scene;
the value of 1 uses a joystick mode, when just clicking on mouse button causes the
scene to spin or zoom (depending on the button clicked) with a rate that depends on
how far away the mouse cursor is from the center of the screen;

◊

2: use Fly-by mode described in Mouse and Keyboard Controls.◊
3: use Keyboard Interactor mode described in Mouse and Keyboard Controls.◊

Delete (short form: dlt); bool(int)
A method to delete the specific instances of this object - the index of the instance to be
deleted is specified as an argument to that method. For example, Window.Delete(2) call will
delete the window #2. If the index is equal 0, then the current instance will be deleted.

♦

Export (short form: exp); bool(string)
A method for exporting the current visualization scene in the OBJ, X3D, or VRML format
into the file whose name supplied as a function agument. The format of the export is
determined by the file extension (".obj" for OBJ, ".x3d" for X3D, ".vrml" for VRML).

♦

FontScale (short form: fs); int
FontScale and FontType properties set the font size and type of text displayed along Color
Bars, a Ruler, etc. The scale value of 0 means the default font size, negative values make the
font smaller, positive values make it larger. The available values for the FontType property
are:

-1: use vector (drawn by lines) font. This font does not look too well, but is always
available and looks the same on all systems.

◊

0: use Arial font family.◊
0: use Courier font family. This font has equal space per letter ("fixed" or
"monispace") font and is useful sometimes.

◊

0: use Times font family.◊

♦

FontType (short form: ft); int
See FontScale.

♦

ImageMagnification (short form: ix); int
The magnification factor of the image. If the produces image does not have to be the same as
the image on the screen, but can be any factor larger. I have a 30,000 by 30,000 image on the
wall of my office.

♦

New (short form: new); bool()
This method creates a new window with default settings for all objects.

♦

Number (short form: num); int
The number of instances (existing independent realizations) of this object. This property is
different from any other property in that it cannot be set, i.e. an assignment to it will fail, so it
can only be used for checking the number of instances of a particular object.

♦

Position (short form: sp); int[2]
The position of the visualization on the screen (returned as two-component integer array).
This property is read-only - use the mouse to move the windows on the screen.

♦

Render (short form: ren); bool()
This method renders the visualization scene.

♦

Size (short form: ss); int[2]
This property controls the size of the visualization window on the screen. Opposite to the
Position property, this property is writeable, i.e. changing this value also changes the size of
the window on the screen.

♦

StereoAlignmentMarks (short form: sam); bool
A boolean property that toggles showing alighnment markers for dual window stereo mode.
This property has no effect if the Stereo Modee mode is not dual windows.

♦

3 Object Reference 3.2.25 Window object

© 2005-2012 by Nick Gnedin 59

StereoMode (short form: sm); int
The method to use to display stereo image. The following values are accepted:

0: Mono display (no stereo).◊
1: Dual windows (two eyes in two separate windows) for geowall-like set up.◊
2: Crystal Eyes (for shutter glasses).◊
3: Simple blue-red stereo.◊
4: The interlaced render stereo type is for output to a VRex stereo projector. All of
the odd horizontal lines are from the left eye, and the even lines are from the right
eye. The user has to make the render window aligned with the VRex projector, or the
eye will be swapped.

◊

5: Left eye only.◊
6: Right eye only.◊
7: Dresden Display special purpose hardware (vertical interleave).◊
8: Analgraph (red-cyan).◊
9: Checkerboard (odd-even interleave).◊

♦

TrueRendering (short form: tr); int
In order to render translucent geometry correctly, OpenGL graphic primirives (points, lines,
and polugons) need to be rendered from the back of the Z-buffer to front ("true rendering").
This property controls how precisely the true redering is implemented. If set to 0, VTK will
render primitives in the order they are stored in memory, which may create visual artifacts;
values from 1 to 3 will produce progressively higher fidelity images at the expense of longer
rendering time. Opaque (i.e. non-translucent) objects will always be rendered correctly by
OpenGL. Some special modes of visualizing particles may switch true rendering off.

♦

UpdateRate (short form: ur); int
The interactive update rate. The main feature of VTK is that it can adjust rendering of a
complex visualization scene to achieve a request update rate. If the rendering of one frames
takes too long to keep up with the requested rate, some of the objects in the scene will be
simplified temporarily to maintain interactive rate. The rate is measured in frames per second,
rounded to the nearest integer.

♦

WriteImage (short form: wi); bool()
A function that creates an image of the current visualization scene (see Image Composer and
Image Writer for more details on what can be output as an image).

♦

Child objects:

ARTMesh♦
Animator♦
BoundingBox♦
Camera♦
ClipPlane♦
ColorBar♦
CrossSection♦
Data♦
DataReader♦
ImageWriter♦
Label♦
Lights♦
Marker♦
MeasuringBox♦
Particles♦

3 Object Reference 3.2.25 Window object

© 2005-2012 by Nick Gnedin 60

Picker♦
Ruler♦
Surface♦
TensorField♦
VectorField♦
Volume♦

3.2.26 ifrit object

Short form: i

Object ifrit serves as a root of IFrIT object hierarchy. It establishes interactions between various
visualization windows. For example, it can synchronize all windows, so that mouse interaction in one
window affects all other windows in the same way.

Available properties:

AutoRender (short form: ar); bool
A switch controlling whether the visualization windows are rendered automatically after
every request, or a render command needs to be issued explicitly. Normally, you do not need
to use this switch.

♦

NumberOfProcessors (short form: np); int
The number of processors to use in the parallel mode. Setting this property may not
necessarily succeed, it will depend on whether the system is actually able to allocate that
many processors for IFrIT to use, but for portability reasons the error message may not be
generated.

♦

OptimizationMode (short form: om); int
This integer property specifies the way IFrIT tries to optimize its performance. If it is set to 0,
IFrIT will try to optimize for speed, using extra memory whenever it can lead to faster
performance; the value 1 will set optimization for memory, and IFrIT will try to minimize its
memory use at the expense of doing extra calculations. With the value 2, IFrIT will optimize
for quality, i.e. it will try to make the highest quality rendering of the scene even if it takes
more memory and more computing time.

♦

RestoreState (short form: restore); bool(string)
This method reads the complete state of all IFrIT objects from a file with the previously saved
state. The argument of this method is the string with the name of the file. If it starts with the
plus sign, the plus sign will be replaced with the name of the default IFrIT directory. If the
argument is an empty string, it will default to "+ifrit.ini".

♦

SaveState (short form: save); bool(string)
This method saves the complete state of all IFrIT objects from a file, which can later be read
with the RestoreState method. The argument of this method is the string with the name of the
file. If it starts with the plus sign, the plus sign will be replaced with the name of the default
IFrIT directory. If the argument is an empty string, it will default to "+ifrit.ini".

♦

SynchronizeCameras (short form: sc); bool(int)
A method synchronizing (i.e. orienting them in the same way) cameras in different
visualization windows.

♦

SynchronizeInteractors (short form: si); bool
A boolean property switching the interactor synchronization between different visualization
windows on and off. If interactors in different visualization windows are synchronized, mouse

♦

3 Object Reference 3.2.26 ifrit object

© 2005-2012 by Nick Gnedin 61

interaction in one window will affect all other visualization windows. This can be useful for,
for example, comparing two different data files, or for looking at two sides of the same scene.
If the interactors are synchronized, the views in different windows do not have to be same -
different cameras may be oriented differently, but they will all move in unison.

Child objects:

ImageComposer♦
Palette♦
Window♦

3.3 Data Objects

3.3.1 ARTBlackHoleParticles data object

Short form: abhp

This object represents the part of ART particles that represent black holes.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total

◊

♦

3 Object Reference 3.3 Data Objects

© 2005-2012 by Nick Gnedin 62

number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.
DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3 Object Reference 3.3.1 ARTBlackHoleParticles data object

© 2005-2012 by Nick Gnedin 63

3.3.2 ARTEddingtonTensorField data object

Short form: aetf

This object represents the ART Eddington tensor field treated a tensor field (rather than individual
components).

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.3 ARTParticles data object

Short form: ap

This object represents the ART particles data. Depending on the setting, this may include all particles,
or only dark matter particles (if stellar particles and black holes are loaded as separate data). IFrIT
recognizes all ART and ART particle data formats. In order to load particles, it is sufficient to load
only the header file (PMcrd*.DAT or *.dph). Other data files will be loaded automatically.

3 Object Reference 3.3.2 ARTEddingtonTensorField data object

© 2005-2012 by Nick Gnedin 64

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

GridSize (short form: gs); int
The size of the top level ART mesh in 1D as perceived by Particles Data (the factor num_grid
in the code).

♦

3 Object Reference 3.3.3 ARTParticles data object

© 2005-2012 by Nick Gnedin 65

InputPositionsAreOffset (short form: ipo); bool
The position offset: 1 (as in HART) if this variable is true or 0 (as in CART) if it is set to
false.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.4 ARTStellarParticles data object

Short form: asp

This object represents the part of ART particles that represent stars.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A

♦

3 Object Reference 3.3.4 ARTStellarParticles data object

© 2005-2012 by Nick Gnedin 66

special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.
DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

3 Object Reference 3.3.4 ARTStellarParticles data object

© 2005-2012 by Nick Gnedin 67

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.5 ARTVariables data object

Short form: av

This object represents the ART gas-dynamic and other variables that live on the Adaptive Mesh,
loaded from .d files.

Available properties:

ConvertToAbundance (short form: ca); bool
A boolean property that converts the densities of atomic species to their abundances during
loading of the data file.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DeclaredVarIncluded (short form: dvi); bool[41]
A boolean array property that specifies whether a variables with a given index should be
included. Setting some of the components of this property to false will exclude the
respective variables from the loaded data - to reduce the memory use and speed up rendering.

♦

DensityUnit (short form: du); int
The units for the density: a value of 0 will keep the density in code units (in units of the mean
total density), a value of 1 switches density units to the mean baryonic density, and a value of
2 switched density units to cm-3.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

3 Object Reference 3.3.5 ARTVariables data object

© 2005-2012 by Nick Gnedin 68

MaxLevel (short form: maxl); int
The maximum ART mesh level to load for the variables (.d) file.

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

OptimizeCache (short form: oc); bool
A boolean property that specifies how the ART variables data are placed in memory. The
default value (0) places the data as it is written in the file; a value of 1 will reorder the mesh
to optimize future memory access at the expense of extra computational time. Setting this
property to 1 only makes sense if you plan to work on agiven data file for some time.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.6 ARTVelocityField data object

Short form: avf

This object represents the ART velocity field treated as a vector field (rather than individual
components).

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on

♦

3 Object Reference 3.3.6 ARTVelocityField data object

© 2005-2012 by Nick Gnedin 69

the scene as Color Bar captions.
Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.7 GADGETBoundaryParticles data object

Short form: gzp

This object represents the GADGET boundary particles.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects◊

♦

3 Object Reference 3.3.7 GADGETBoundaryParticles data object

© 2005-2012 by Nick Gnedin 70

every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.
DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3 Object Reference 3.3.7 GADGETBoundaryParticles data object

© 2005-2012 by Nick Gnedin 71

3.3.8 GADGETBulgeParticles data object

Short form: gbp

This object represents the GADGET bulge particles.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,

♦

3 Object Reference 3.3.8 GADGETBulgeParticles data object

© 2005-2012 by Nick Gnedin 72

Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").
FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.9 GADGETDiskParticles data object

Short form: gdp

This object represents the GADGET disk particles.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int♦

3 Object Reference 3.3.9 GADGETDiskParticles data object

© 2005-2012 by Nick Gnedin 73

The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.
DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like

♦

3 Object Reference 3.3.9 GADGETDiskParticles data object

© 2005-2012 by Nick Gnedin 74

((0.1,1),(2,3),(10,20)).
ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.10 GADGETGasParticles data object

Short form: ggp

This object represents the GADGET Gas particles.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

♦

3 Object Reference 3.3.10 GADGETGasParticles data object

© 2005-2012 by Nick Gnedin 75

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3 Object Reference 3.3.10 GADGETGasParticles data object

© 2005-2012 by Nick Gnedin 76

3.3.11 GADGETHaloParticles data object

Short form: ghp

This object represents the GADGET halo particles.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.

♦

DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,

♦

3 Object Reference 3.3.11 GADGETHaloParticles data object

© 2005-2012 by Nick Gnedin 77

Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").
FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.12 GADGETStellarParticles data object

Short form: gsp

This object represents the GADGET stellar particles (stars).

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int♦

3 Object Reference 3.3.12 GADGETStellarParticles data object

© 2005-2012 by Nick Gnedin 78

The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so
computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.
DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like

♦

3 Object Reference 3.3.12 GADGETStellarParticles data object

© 2005-2012 by Nick Gnedin 79

((0.1,1),(2,3),(10,20)).
ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.13 NativeVTKPolyData data object

Short form: vtkp

This object represents polygonal mesh data type in the VTK native format.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset

♦

3 Object Reference 3.3.13 NativeVTKPolyData data object

© 2005-2012 by Nick Gnedin 80

to the range of the data in the current file after each file load.
Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.14 NativeVTKScalars data object

Short form: vtks

This object represents scalar data type in the VTK native format.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3 Object Reference 3.3.14 NativeVTKScalars data object

© 2005-2012 by Nick Gnedin 81

3.3.15 NativeVTKTensors data object

Short form: vtkt

This object represents tensor data type in the VTK native format.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.16 NativeVTKVectors data object

Short form: vtkv

This object represents vector data type in the VTK native format.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

3 Object Reference 3.3.15 NativeVTKTensors data object

© 2005-2012 by Nick Gnedin 82

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.17 Particles data object

Short form: p

This object represents the built-in Particles data type.

Available properties:

AddOrderAsVar (short form: ov); bool
A boolean switch that specifies whether the order of particles in the data file should be stored
as an additional particle variable. This can be useful for plotting, for example, trajectories,
when individual particles in the data file are actually locations of the same object at different
times.

♦

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

DensityVar (short form: dv); int
The index of a particle variable that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the
variable value. Setting this property to -1 would disable the density computation. IFrIT uses
VTK classes to compute the particle density. These classes are not very efficient, so

♦

3 Object Reference 3.3.16 NativeVTKVectors data object

© 2005-2012 by Nick Gnedin 83

computing density for a large number of particles is slow. Density computation is done in
parallel, so using more than 1 processor would speed up the calculation.
DownsampleFactor (short form: df); int
See DownsampleMode.

♦

DownsampleMode (short form: dm); int
DownsampleMode and DownsampleFactor properties specify which subset of all particles
is to be loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction
of all particles which must be loaded (i.e. DownsampleFactor=10 will load every tenth
particle; but notice exceptions for DownsampleMode=1 and DownsampleMode=2 modes),
while the DownsampleMode property specifies the way the particles must be subsampled,
and takes values from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order
particles are present in the data file.

◊

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects
every DownsampleFactor particle along each dimension. For example, if the total
number of particles is 16 and DownsampleFactor=2, then particles are assumed to
be located on a 4 by 4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11
(i=3,j=3) are selected.

◊

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles
are set on a cubic 3D mesh and every DownsampleFactor particle along each of the
3 dimensions is selected.

◊

DownsampleMode=3 selects particles to load at random.◊
DownsampleMode=4 selects the particles from the data file in order, until a needed
number of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

◊

DownsampleMode=5 selects the particles from the data file in order, but counting
from the end of the file.

◊

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

3 Object Reference 3.3.17 Particles data object

© 2005-2012 by Nick Gnedin 84

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

TypeIncluded (short form: ti); bool
A boolean array property which specifies whether the particular type of particles is loaded or
not. This property only makes sense for extensions that support several different types of
particles.

♦

UseExtras (short form: ue); bool()
A boolean read-only property that reports whether this particle data type supports extra
properties (like adding particle order and/or particle density as extra variables).

♦

3.3.18 Scalars data object

Short form: s

This object represents the built-in Scalars data type.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Smooth (short form: sm); bool(int , float)
This method (script function) will smooth the given variable with a Gaussian kernel of a
given size (measured in cell sized of the grid). For example, a call to Scalars.Smooth(2,1.5)

♦

3 Object Reference 3.3.18 Scalars data object

© 2005-2012 by Nick Gnedin 85

will smooth the field of the scalar variable #2 with a Gaussian of width 1.5 cell sizes. Such
smoothing will make eliminate a lot of small-scale noise (i.e., it is a low-pass filter).
Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3.3.19 Tensors data object

Short form: t

This object represents the built-in Tensors data type.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3 Object Reference 3.3.19 Tensors data object

© 2005-2012 by Nick Gnedin 86

3.3.20 Vectors data object

Short form: v

This object represents the built-in Vectors data type.

Available properties:

DataPresent (short form: dp); bool()
A method that checks whether the data has been loaded.

♦

Erase (short form: e); bool()
A method (script function) that erases this type of data. It is equivalent to calling
DataReader.Erase(...) with this data type as an argument. For example,
Data.Scalars.Erase() is equivalent to DataReader.Erase("Scalars").

♦

FileName (short form: fn); string()
The name of last data file read. This property is read-only - assigning it a name of a file will
not cause this file to be read. Use the DataReader.Load(...) method for loading data.

♦

Load (short form: l); bool(string)
A method (script function) that loads this type of data from a given file. It is equivalent to
calling DataReader.Load(...) with this data type and a file name as arguments. For example,
Data.Scalars.Load("mydata.bin") is equivalent to
DataReader.Load("Scalars","mydata.bin").

♦

Name (short form: n); string[*]
A string-valued Name array sets the names of all available variables. Names are displayed on
the scene as Color Bar captions.

♦

Range (short form: r); pair[*]
An array of ranges for available variables. Each component of an array is a pair (min,max) of
values that are used to map colors to the numeric values of a particular variable: the value is
clamped to lie within the range and then mapped to a given palette with the given stretch. For
example, for the data with 3 variables the value of this property may look in Python like
((0.1,1),(2,3),(10,20)).

♦

ResetOnLoad (short form: rol); bool
A boolean switch toggling whether the range for available variables (property Range) is reset
to the range of the data in the current file after each file load.

♦

Stretch (short form: s); string[*]
A Stretch property sets the stretch (either "linear" or "logarithmic") for each available
variable. String names can be shortened to the shortest recognizable sub-string, i.e. "lin"
stands for the linear stretch.

♦

3 Object Reference 3.3.20 Vectors data object

© 2005-2012 by Nick Gnedin 87

A Appendices

A.1 Codes For Writing IFrIT Data Files

A.1.1 Code Examples

Examples of computer codes for writing IFrIT data files are available in docs directory of IFrIT source
distribution.

A.1.2 Fortran

C
C Write to text uniform scalars data file
C
 subroutine WriteIFrITUniformScalarsTxtFile(n1,n2,n3,var1,var2,var3,
 . filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 var1(n1,n2,n3)
 real*4 var2(n1,n2,n3) ! Three scalar variables
 real*4 var3(n1,n2,n3)
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) var1(i,j,k), var2(i,j,k), var3(i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform scalars data file
C
 subroutine WriteIFrITUniformScalarsBinFile(n1,n2,n3,var1,var2,var3,
 . filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 var1(n1,n2,n3)
 real*4 var2(n1,n2,n3) ! Three scalar variables
 real*4 var3(n1,n2,n3)
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((var1(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((var2(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((var3(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text uniform vectors data file
C
 subroutine WriteIFrITUniformVectorsTxtFile(n1,n2,n3,vect,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 vect(3,n1,n2,n3) ! Vector field

© 2005-2012 by Nick Gnedin 88

 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) vect(1,i,j,k), vect(2,i,j,k), vect(3,i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform vectors data file
C
 subroutine WriteIFrITUniformVectorsBinFile(n1,n2,n3,vect,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 vect(3,n1,n2,n3) ! Vector field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((vect(1,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((vect(2,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((vect(3,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text uniform tensors data file
C
 subroutine WriteIFrITUniformTensorsTxtFile(n1,n2,n3,tens,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 tens(6,n1,n2,n3) ! Tensor field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) tens(1,i,j,k), tens(2,i,j,k), tens(3,i,j,k),
 . tens(4,i,j,k), tens(5,i,j,k), tens(6,i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform tensors data file
C
 subroutine WriteIFrITUniformTensorsBinFile(n1,n2,n3,tens,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 tens(6,n1,n2,n3) ! Tensor field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((tens(1,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(2,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(3,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(4,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(5,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(6,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text basic particles data file
C

A Appendices A.1.2 Fortran

© 2005-2012 by Nick Gnedin 89

 subroutine WriteIFrITBasicParticlesTxtFile(n,xl,yl,zl,xh,yh,zh,
 . x,y,z,attr1,attr2,attr3,filename)
 integer n ! Number of particles
 real*4 xl, yl, zl, xh, yh, zh ! Bounding box
 real*4 x(n), y(n), z(n) ! Particle positions (can be real*8)
 real*4 attr1(n), attr2(n), attr3(n) ! Particle attributes
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n
 write(1,*) xl, yl, zl, xh, yh, zh
 do i=1,n
 write(1,*) x(i), y(i), z(i), attr1(i), attr2(i), attr3(i)
 enddo
 close(1)
 return
 end
C
C Write to binary basic particles data file
C
 subroutine WriteIFrITBasicParticlesBinFile(n,xl,yl,zl,xh,yh,zh,
 . x,y,z,attr1,attr2,attr3,filename)
 integer n ! Number of particles
 real*4 xl, yl, zl, xh, yh, zh ! Bounding box
 real*4 x(n), y(n), z(n) ! Particle positions (can be real*8)
 real*4 attr1(n), attr2(n), attr3(n) ! Particle attributes
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n
 write(1) xl, yl, zl, xh, yh, zh
 write(1) (x(i),i=1,n)
 write(1) (y(i),i=1,n)
 write(1) (z(i),i=1,n)
 write(1) (attr1(i),i=1,n)
 write(1) (attr2(i),i=1,n)
 write(1) (attr3(i),i=1,n)
 close(1)
 return
 end

A.1.3 C

#include <stdio.h>

/* Write to text uniform scalars data file */

int WriteIFrITUniformScalarsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *var1, float *var2, float *var3, /* Three scalar variables */
 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g\n",var1[i+n1*(j+n2*k)],
 var2[i+n1*(j+n2*k)],
 var3[i+n1*(j+n2*k)]);
 }
 }
 }

A Appendices A.1.3 C

© 2005-2012 by Nick Gnedin 90

 fclose(F);
 return 0;
}

/* Write to binary uniform scalars data file */

int WriteIFrITUniformScalarsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *var1, float *var2, float *var3, /* Three scalar variables */
 char *filename) /* Name of the file */
{
 int ntemp; FILE *F; /* ntemp should be declared long on a 16-bit machine */
 F = fopen(filename,"wb"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F); fwrite(var1,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(var2,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(var3,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text uniform vectors data file */

int WriteIFrITUniformVectorsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *vect, /* Vector field */
 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g\n",vect[0+3*(i+n1*(j+n2*k))],
 vect[1+3*(i+n1*(j+n2*k))],
 vect[2+3*(i+n1*(j+n2*k))]);
 }
 }
 }
 fclose(F);
 return 0;
}

/* Write to binary uniform vectors data file */

int WriteIFrITUniformVectorsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *vect, /* Vector field */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F; /* ntemp should be declared long on a 16-bit machine */
 F = fopen(filename,"wb"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);

A Appendices A.1.3 C

© 2005-2012 by Nick Gnedin 91

 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+0,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+1,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+2,4,1,F);
 fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text uniform tensors data file */

int WriteIFrITUniformTensorsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *tens, /* Tensor field */
 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g %g %g %g\n",tens[0+6*(i+n1*(j+n2*k))],
 tens[1+6*(i+n1*(j+n2*k))],
 tens[2+6*(i+n1*(j+n2*k))],
 tens[3+6*(i+n1*(j+n2*k))],
 tens[4+6*(i+n1*(j+n2*k))],
 tens[5+6*(i+n1*(j+n2*k))]);
 }
 }
 }
 fclose(F);
 return 0;
}

/* Write to binary uniform tensors data file */

int WriteIFrITUniformTensorsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *tens, /* Tensor field */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F; /* ntemp should be declared long on a 16-bit machine */
 F = fopen(filename,"wb"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+0,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+1,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+2,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);

A Appendices A.1.3 C

© 2005-2012 by Nick Gnedin 92

 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+3,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+4,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+5,4,1,F);
 fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text basic particles data file */

int WriteIFrITBasicParticlesTxtFile(
 int n, /* Number of particles */
 float xl, float yl, float zl, float xh, float yh, float zh, /* Bounding box */
 float *x, float *y, float *z, /* Particle positions (can be double) */
 float *attr1, float *attr2, float *attr3, /* Particle attributes */
 char *filename) /* Name of the file */
{
 int i; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d\n",n);
 fprintf(F,"%g %g %g %g %g %g\n",xl,yl,zl,xh,yh,zh);
 for(i=0; n>i; i++)
 {
 fprintf(F,"%g %g %g %g %g %g\n",x[i],y[i],z[i],
 attr1[i],attr2[i],attr3[i]);
 }
 fclose(F);
 return 0;
}

/* Write to binary basic particles data file */

int WriteIFrITBasicParticlesBinFile(
 int n, /* Number of particles */
 float xl, float yl, float zl, float xh, float yh, float zh, /* Bounding box */
 float *x, float *y, float *z, /* Particle positions (can be double) */
 float *attr1, float *attr2, float *attr3, /* Particle attributes */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F;
 F = fopen(filename,"wb"); if(F == NULL) return 1;
 ntemp = 4;
 fwrite(&ntemp,4,1,F); fwrite(&n,4,1,F); fwrite(&ntemp,4,1,F);
 ntemp = 24;fwrite(&ntemp,4,1,F);
 fwrite(&xl,4,1,F);
 fwrite(&yl,4,1,F);
 fwrite(&zl,4,1,F);
 fwrite(&xh,4,1,F);
 fwrite(&yh,4,1,F);
 fwrite(&zh,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = sizeof(x[0])*n;
 fwrite(&ntemp,4,1,F); fwrite(x,sizeof(x[0]),n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(y,sizeof(y[0]),n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(z,sizeof(z[0]),n,F); fwrite(&ntemp,4,1,F);
 ntemp = 4*n;
 fwrite(&ntemp,4,1,F); fwrite(attr1,4,n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(attr2,4,n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(attr3,4,n,F); fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

A Appendices A.1.3 C

© 2005-2012 by Nick Gnedin 93

A.1.4 IDL

;
; Write to text scalar field data file
;
pro WriteIFrITUniformScalarsTxtFile, n1, n2, n3, var1, var2, var3, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; var1, var2, var3: three scalar variables
; filename: name of the file
openw, 1, filename
printf, 1, n1, n2, n3
for k=0,n3-1 do $
for j=0,n2-1 do $
for i=0,n1-1 do $
printf, 1, var1[i,j,k], var2[i,j,k], var3[i,j,k]
close, 1
end
;
; Write to binary scalar field data file
;
pro WriteIFrITUniformScalarsBinFile, n1, n2, n3, var1, var2, var3, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; var1, var2, var3: three scalar variables
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])
writeu, 1, var1
writeu, 1, var2
writeu, 1, var3
close, 1
end
;
; Write to text uniform vectors data file
;
pro WriteIFrITUniformVectorsTxtFile, n1, n2, n3, vect, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; vect[3,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename
printf, 1, n1, n2, n3
for k=0,n3-1 do $
for j=0,n2-1 do $
for i=0,n1-1 do $
printf, 1, vect[0,i,j,k], vect[1,i,j,k], vect[2,i,j,k]
close, 1
end
;
; Write to binary uniform vectors data file
;
pro WriteIFrITUniformVectorsBinFile, n1, n2, n3, vect, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; vect[3,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])
writeu, 1, vect[0,*,*,*]
writeu, 1, vect[1,*,*,*]
writeu, 1, vect[2,*,*,*]
close, 1
end
;
; Write to text uniform tensors data file
;
pro WriteIFrITUniformTensorsTxtFile, n1, n2, n3, tens, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; tens[6,n1,n2,n3]: uniform tensors
; filename: name of the file
openw, 1, filename

A Appendices A.1.4 IDL

© 2005-2012 by Nick Gnedin 94

printf, 1, n1, n2, n3
for k=0,n3-1 do $
for j=0,n2-1 do $
for i=0,n1-1 do $
printf, 1, tens[0,i,j,k], tens[1,i,j,k], tens[2,i,j,k], $
 tens[3,i,j,k], tens[4,i,j,k], tens[5,i,j,k]
close, 1
end
;
; Write to binary uniform tensors data file
;
pro WriteIFrITUniformTensorsBinFile, n1, n2, n3, tens, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; tens[6,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])
writeu, 1, tens[0,*,*,*]
writeu, 1, tens[1,*,*,*]
writeu, 1, tens[2,*,*,*]
writeu, 1, tens[3,*,*,*]
writeu, 1, tens[4,*,*,*]
writeu, 1, tens[5,*,*,*]
close, 1
end
;
; Write to text basic particles data file
;
pro WriteIFrITBasicParticlesTxtFile, n, xl, yl, zl, xh, yh, zh, $
x, y, z, attr1, attr2, attr3, filename
; n: number of particles
; xl, yl, zl, xh, yh, zh: bounding box (can be double)
; x, y, z: particle positions (can be double)
; attr1, attr2, attr3: particle attributes/
; filename: name of the file
openw, 1, filename
printf, 1, n
printf, 1, xl, yl, zl, xh, yh, zh
for i=0,n-1 do $
printf, 1, x[i], y[i], z[i], attr1[i], attr2[i], attr3[i]
close, 1
end
;
; Write to binary basic particles data file
;
pro WriteIFrITBasicParticlesBinFile, n, xl, yl, zl, xh, yh, zh, $
x, y, z, attr1, attr2, attr3, filename
; n: number of particles
; xl, yl, zl, xh, yh, zh: bounding box (can be double)
; x, y, z: particle positions (can be double)
; attr1, attr2, attr3: particle attributes/
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long(n)
writeu, 1, float([xl,yl,zl,xh,yh,zh])
writeu, 1, x
writeu, 1, y
writeu, 1, z
writeu, 1, attr1
writeu, 1, attr2
writeu, 1, attr3
close, 1
end

A Appendices A.1.4 IDL

© 2005-2012 by Nick Gnedin 95

A.2 License Agreement

A.2.1 Overview

The standard edition of IFrIT is distributed under the GNU GPL License. Extensions of IFrIT may impose
their own licenses.

For those not familiar with the GNU GPL, the license basically allows you to:

Use the IFrIT software and source code at no charge.•
Distribute verbatim copies of the software in source form or as binaries you create.•
Sell verbatim copies of the software for a media fee, or sell support for the software.•
Distribute or sell your own modified version of IFrIT so long as the source code is made available
under the GPL.

•

What this license does not allow you to do is make changes or add features to IFrIT and then sell a binary
distribution without source code. You must provide source for any changes or additions to the software, and
all code must be provided under the GPL.

A.2.2 GNU General Public License

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

A Appendices A.2 License Agreement

© 2005-2012 by Nick Gnedin 96

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

•

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

•

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

•

A Appendices A.2.2 GNU General Public License

© 2005-2012 by Nick Gnedin 97

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

•

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

•

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

•

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

A Appendices A.2.2 GNU General Public License

© 2005-2012 by Nick Gnedin 98

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

A Appendices A.2.2 GNU General Public License

© 2005-2012 by Nick Gnedin 99

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

A.2.3 ART Extension License

ART Extension of IFrIT adds capabilities to work with Oct-based Adaptive Mesh Refinement data and read
directly the data files created by the ART (Hydrodynamic Adaptive Refinement Tree) code. Since ART is
not open source, the extension license does not allow you to distribute IFrIT with ART extension, or to use
it for any commercial purpose.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This is proprietary software. Redistribution and modification in any form are expressly prohibited. You are
given a non-exclusive right to use this software in original source and binary forms for your personal,
non-commercial needs free of charge.

NO WARRANTY

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

END OF TERMS AND CONDITIONS

A Appendices A.2.3 ART Extension License

© 2005-2012 by Nick Gnedin 100

	Table of Contents
	1 User Guide
	1.1 Overview
	1.1.1 What can IFrIT do?
	1.1.2 General Structure of IFrIT
	1.1.3 Objects and Properties
	1.1.4 Objects and Data

	1.2 Running IFrIT
	1.2.1 Starting and controlling IFrIT
	1.2.2 Mouse and Keyboard Controls
	1.2.3 Environment Variables
	1.2.4 Command-line Options
	1.2.5 State File

	1.3 File Formats
	1.3.1 Overview
	1.3.2 Built-in Scalars Data
	1.3.3 Built-in Vectors Data
	1.3.4 Built-in Tensors Data
	1.3.5 Built-in Particles Data

	1.4 IFrIT Palettes
	1.4.1 Built-in Palettes

	1.5 Animation Support
	1.5.1 Animation Mode
	1.5.2 Animatable Files
	1.5.3 Running Animator

	2 Shell Reference
	2.1 GUI Shell Reference
	2.1.1 Graphical User Interface (GUI) Shell
	2.1.2 Script Window
	2.1.3 Palette Editor
	2.1.4 Data Explorer
	2.1.5 File Set Explorer
	2.1.6 Image Composer
	2.1.7 Picker Window
	2.1.8 Parallel Controller
	2.1.9 ART File Options
	2.1.10 ART Cosmology Warning
	2.1.11 ART Mesh Explorer

	2.2 Non-GUI Shell Reference
	2.2.1 Command-line Shell
	2.2.2 Off-screen Shell

	3 Object Reference
	3.1 Overview
	3.1.1 Objects and Properties
	3.1.2 Object Hierarchy

	3.2 Regular (Non-Data) Objects
	3.2.1 ARTMesh object
	3.2.2 Animator object
	3.2.3 BoundingBox object
	3.2.4 Camera object
	3.2.5 ClipPlane object
	3.2.6 ColorBar object
	3.2.7 CrossSection object
	3.2.8 Data object
	3.2.9 DataReader object
	3.2.10 ImageComposer object
	3.2.11 ImageWriter object
	3.2.12 Label object
	3.2.13 Lights object
	3.2.14 Marker object
	3.2.15 Material object
	3.2.16 MeasuringBox object
	3.2.17 Palette object
	3.2.18 Particles object
	3.2.19 Picker object
	3.2.20 Ruler object
	3.2.21 Surface object
	3.2.22 TensorField object
	3.2.23 VectorField object
	3.2.24 Volume object
	3.2.25 Window object
	3.2.26 ifrit object

	3.3 Data Objects
	3.3.1 ARTBlackHoleParticles data object
	3.3.2 ARTEddingtonTensorField data object
	3.3.3 ARTParticles data object
	3.3.4 ARTStellarParticles data object
	3.3.5 ARTVariables data object
	3.3.6 ARTVelocityField data object
	3.3.7 GADGETBoundaryParticles data object
	3.3.8 GADGETBulgeParticles data object
	3.3.9 GADGETDiskParticles data object
	3.3.10 GADGETGasParticles data object
	3.3.11 GADGETHaloParticles data object
	3.3.12 GADGETStellarParticles data object
	3.3.13 NativeVTKPolyData data object
	3.3.14 NativeVTKScalars data object
	3.3.15 NativeVTKTensors data object
	3.3.16 NativeVTKVectors data object
	3.3.17 Particles data object
	3.3.18 Scalars data object
	3.3.19 Tensors data object
	3.3.20 Vectors data object

	A Appendices
	A.1 Codes For Writing IFrIT Data Files
	A.1.1 Code Examples
	A.1.2 Fortran
	A.1.3 C
	A.1.4 IDL

	A.2 License Agreement
	A.2.1 Overview
	A.2.2 GNU General Public License
	A.2.3 ART Extension License

