

Spatial inference for astronomical data sets with INLA

EWASS - 5 April 2018 - Liverpool, UK S6 - Software in Astronomy

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

On behalf of Santiago Gonzalez-Gaitan and the COIN Collaboration

Spatial fields: crucial to astronomy

Sun's corona in UV (Hi-C) *Cirtain+13*

Cosmic Microwave Background (Planck) - *Planck*+13

Protoplanetary disk with interferometry (ALMA) *ALMA+14*

N-body Simulation (VIRGO) *Jenkins*+98

Spectral Data-Cubes

Spatial auto-correlations

Correlations arise from:

- → physical effects: physical properties may extend regions that cover several spaxels
- → instrumental effects: crosstalks, multiple fibres within each spaxel (due to dithering in fibre-bundles IFUs)

Slide by Santiago Gonzalez-Gaitan

CALIFA SURVEY

Specs: PMAS/PPAK instrument with 382 dibres and hexagonal Field of View of 74"x64" at Calar Alto 3.5m telescope.

Obs: 667 galaxies at z<0.03 + 104 galaxies from CALIFA/PISCO (Sanchez+12,Galbany+18)

http://califa.caha.es/

Current statistical approaches, in IFU Astronomy, solely based on image-segmentation

Slide by Rafael S. de Souza

Spatial Modelling

Gaussian Markov Random Field

 $\mathcal{N}_{\text{GMRF}}(\mu, Q) = (2\pi)^{-n/2} |Q|^{1/2} \exp\left(-\frac{1}{2}(x-\mu)'Q(x-\mu)\right),$

Hierarchical Bayesian Model

$$z_{i} \sim \mathcal{N}(f(x_{i}), \sigma_{i}^{2}),$$

$$f(\cdot) = g(\cdot) + h(\cdot),$$
Physical quantity $g(\cdot) \sim \mathcal{N}_{\text{GMRF}}[\sigma, \kappa],$
(age, metallicity, etc.) $h(\cdot) = \alpha + \beta \times \text{edist}(\cdot),$

$$\sigma, \kappa, \alpha, \beta \sim \pi.$$
Allows glo

Allows global radial profile

Integrated Nested Laplace Approximation (INLA)

Fast Bayesian inference

Spatial field reconstruction with INLA: Application to IFU galaxy data

S. González-Gaitán^{1*}, R. S. de Souza², A. Krone-Martins³, E. Cameron⁴, P. Coelho⁵, L. Galbany⁶, E. E. O. Ishida⁷, for the COIN collaboration ¹CENTRA/COSTAR, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ²Department of Physics & Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA ³CENTRA/SIM, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisboa, Portugal ⁴Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LS, United Kingdom ⁵Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP, Brazil ⁶PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

⁷Laboratoire de Physique de Clermont, Université Clermont-Auvergne, Aubière Cedex, 63178, France

Slide by Rafael S. de Souza

Reconstruction of missing data (Inpainting)

Reconstruction of missing data (Inpainting) ΕW(Hα)

Probabilistic Description

Software

Our paper has been submitted: <u>arXiv:astro-ph/180206280G</u>

We provide snippet codes and data products: <u>https://github.com/COINtoolbox/Galaxies_INLA</u>

R-INLA is an available software written in R largely used in many fields **outside** of astronomy: <u>http://www.r-inla.org/</u>

INCREDIBLE POTENTIAL FOR ASTRONOMY!

For any spatially resolved environment, clusters, galaxies, CMB, interferometry, N-body simulations and much more...

Use it in your research!! Recommend it!

https://github.com/COINtoolbox/Galaxies INLA

Thank you!

Results on CALIFA maps: errors

Given the Bayesian nature of INLA, we can obtain errors assuming here normally distributed 1sigma of posteriors

Summary and outlook

- INLA is a powerful technique to model spatial fields taking into account spatial correlations
- INLA uses a) Gaussian Markov Random Fields to model space and b) Integrated Laplace Approximation for Bayesian inference
- R-INLA provides an efficient free supported software for immediate application
- INLA has been extensively used in geostatistics and this is its first use in astronomy (to our knowledge) with IMMENSE POTENTIAL in many areas of astronomy
- Finally, the INLA model, besides a single input parameter, could handle more complicated multi-dimensional models (future work)