The Astrophysics Source Code Library (ASCL) is a free online registry and repository for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).
IGRINS RV extracts radial velocities (RVs) from spectra taken with the Immersion GRating INfrared Spectrometer (IGRINS). It uses a modified forward modeling technique that leverages telluric absorption lines as a common-path wavelength calibrator. IGRINS RV achieves an RV precision in the H and K bands of around 25-30 m/s for narrow-line stars.
The IGRINS (Immersion Grating Infrared Spectrometer) PipeLine Package (PLP) processes all IGRINS observing data, such as that from the McDonald 2.7m, LDT/DCT, or Gemini-South telescopes, without (or with a minimum of) human interaction. It was also designed to be adaptable for a real time processing during the observing run. The IGRINS PLP uses a "recipe" to process a certain data group and requires an input file describing which recipe should be used with which data sets.
TESS-SIP creates a Systematics-insensitive Periodogram (SIP) using lightkurve (ascl:1812.013) to detect long period rotation in NASA's TESS mission data. The SIP method detrends telescope systematics (the TESS scattered light) simultaneously with calculating a Lomb-Scargle periodogram, thus allowing estimation of the rotation rate of variables with a period of >30 days when there are multiple sectors.
blasé performs whole-spectrum fitting by cloning 10,000+ spectral lines from a pre-computed synthetic spectral model template and then learning the perturbations to those lines through comparison to real data. Each spectral line has four parameters, yielding possibly 40,000+ parameters. The technique uses autodiff to tune the parameters precisely and quickly. Built in PyTorch with native GPU support, blasé can be extended to, for example, Doppler imaging, Precision RVs, and abundances.
ATOCA (Algorithm to Treat Order Contamination) extracts and decontaminates spectroscopic images with multiple sources or diffraction orders. For all orders and sources, the package takes the wavelength solutions, the trace profiles, the throughputs, and the spectral resolution kernels as input. From these, ATOCA simultaneously models the detector and extracts the spectra.
Optimal BLS explicitly includes Keplerian dynamics in transit searches, which enhances transit detectability while reducing the resources and time usually required for such searches. The (standard) BLS is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). Physical system parameters, such as the host star's size and mass, directly affect transit search. Optimal BLS leverages this understanding to optimize the search for every star individually.
spaceKLIP reduces and analyzes JWST NIRCam and MIRI coronagraphy data. The package runs the official JWST stage 1 and 2 data reduction pipelines with several modifications that improve the quality of high-contrast imaging reductions. spaceKLIP then performs PSF subtraction based on the KLIP algorithm as implemented in pyKLIP (ascl:1506.001), outputs contrast curves, and enables forward model PSF fitting for any detected companions in order to extract their properties (offset and flux).
SpecMatch-Emp extracts the fundamental properties of a star (effective temperature, radius, and metallicity) by comparing a target star's spectrum to a library of spectra from stars with known properties. The spectral library comprises high-resolution, high signal-to-noise observed spectra from Keck/HIRES for 404 touchstone stars with well-determined stellar parameters derived from interferometry, asteroseismology, and spectrophotometry. The code achieves accuracies of 100K, 15%, and 0.09 dex in Teff, Rstar, and [Fe/H] respectively for FGKM dwarfs.
The PACMAN pipeline reduces and analyzes Hubble/Wide Field Camera 3 (WFC3) observations of transiting exoplanets. The pipeline runs end-to-end, beginning with a time series of 2D images and ending with a spectrum for the planet, and includes both spectral extraction and light curve fitting. PACMAN can easily fit multiple observations simultaneously.
PyMieScatt (Python Mie Scattering) calculates relevant parameters including absorption, scattering, extinction, asymmetry, and backscatter. The package also contains single-line functions to calculate optical coefficients (in Mm-1) of ensembles of particles in lognormal (with single or multiple modes) or custom size distributions. The inverse calculations retrieve the complex refractive index from laboratory measurements of scattering and absorption (or backscatter), useful for studying atmospheric organic aerosol of unknown composition.