ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).


Most Recently Added Codes

2020 Feb 25

[ascl:2002.004] triceratops: Candidate exoplanet rating tool

triceratops (Tool for Rating Interesting Candidate Exoplanets and Reliability Analysis of Transits Originating from Proximate Stars) validates planet candidates from the Transiting Exoplanet Survey Satellite (TESS). The code calculates the probabilities of a wide range of transit-producing scenarios using the primary transit of the planet candidate and preexisting knowledge of its host and nearby stars. It then uses the known properties of these stars to calculate star-specific priors for each scenario with estimates of stellar multiplicity and planet occurrence rates.

[ascl:2002.003] ORIGIN: detectiOn and extRactIon of Galaxy emIssion liNes

ORIGIN performs blind detection of faint emitters in MUSE datacubes. The algorithm is tuned to detect faint spatial-spectral emission signatures while allowing for a stable false detection rate over the data cube, and providing in the same time an automated and reliable estimation of the purity. ORIGIN implements a nuisance removal part based on a continuum subtraction combining a Discrete Cosine Transform and an iterative Principal Component Analysis and a detection part based on the local maxima of Generalized Likelihood Ratio test statistics obtained for a set of spatial-spectral profiles of emission line emitters. In addition, it performs a purity estimation in which the proportion of true emission lines is estimated from the data itself: the distribution of the local maxima in the noise only configuration is estimated from that of the local minima.

[ascl:2002.002] RASCAS: Resonant line transfer in AMR simulations

The massively parallel code RASCAS (RAdiative SCattering in Astrophysical Simulations) performs radiative transfer on an adaptive mesh with an octree structure using the Monte Carlo technique. The code features full MPI parallelization, domain decomposition, adaptive load-balancing, and a standard peeling algorithm to construct mock observations. The radiative transport of resonant line photons through different mixes of species (e.g. HI, SiII, MgII, FeII), including their interaction with dust, is implemented in a modular fashion to allow new transitions to be easily added to the code. RASCAS may also be used to propagate photons at any wavelength (e.g. stellar continuum or fluorescent lines), and has been designed to be easily customizable and to process simulations of arbitrarily large sizes on large supercomputers.

[ascl:2002.001] SDAR: Slow-Down Algorithmic Regularization code for solving few-body problems

SDAR (Slow-Down Algorithmic Regularization) simulates the long-term evolution of few-body systems such as binaries and triples. The algorithm used provides a few orders of magnitude faster performance than the classical N-body method. The secular evolution of hierarchical systems, e.g. Kozai-Lidov oscillation, can be well reproduced. The code is written in the C++ language and can be used either as a stand-alone tool or a library to be plugged in other N-body codes. The high precision of the floating point to 62 digits is also supported.

2020 Feb 21

[submitted] Determination of Length of (Earth) Day [LOD] in the past geologic epochs

The protocol describes the algorithm of arriving at LOD in a given past geological Epoch. First the lunar orbital radius of the given geologic epoch has to be determined. For this the velocity of recession of Moon for the accelerated phase has to be determined. The spatial integral of the reciprocal of Velocity of recession gives the the transit time of Moon from desired orbit to the present orbit.Through several iterations the transit time is made to converge on the geologic epoch. Once we determine the desired orbital radius it has to be substituted in the LOD expression to determine the LOD in the given geologic epoch.

2020 Feb 19

[submitted] MERA: Analysis Tool for Astrophysical Simulation Data in the Julia Language

MERA works with large 3D AMR/uniform-grid and N-body particle data sets from astrophysical simulations such as those produced by the hydrodynamic code RAMSES (ascl:1011.007) and is written entirely in the Julia language. The package provides essential functions for efficient and memory lightweight data loading and analysis. The core of MERA is a database framework.

[submitted] pycf3 - Cosmicflows-3 Distance-Velocity Calculator client for Python

The project is a simple Python client for Cosmicflows-3 Distance-Velocity Calculator at distances less than 400 Mpc (http://edd.ifa.hawaii.edu/CF3calculator/)

Compute expectation distances or velocities based on smoothed velocity field from the Wiener filter model of https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5438G/abstract.

2020 Feb 04

[submitted] StarburstPy: Python Wrapper for Starburst99

StarburstPy is a python wrapper for Starburst99 (ascl:1104.003). The code contains methods for setting all inputs, running Starburst99, and reading output data into python dictionaries.

2020 Jan 31

[ascl:2001.015] gnm: The MCMC Jagger

gnm is an implementation of the affine-invariant sampler for Markov chain Monte Carlo (MCMC) that uses the Gauss-Newton-Metropolis (GNM) Algorithm. The GNM algorithm is specialized in sampling highly non-linear posterior probability distribution functions of the form exp(-||f(x)||^2/2). The code includes dynamic hyper-parameter optimization to increase performance of the sampling; other features include the Jacobian tester and an error bars creator.

[ascl:2001.014] Peasoup: C++/CUDA GPU pulsar searching library

The NVIDIA GPU-based pipeline code peasoup provides a one-step pulsar search, including searching for pulsars with up to moderate accelerations, with only one command. Its features include dedispersion, dereddening in the Fourier domain, resampling, peak detection, and optional time series folding. peasoup's output is the candidate list.