Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with (i.e.,

Most Recently Added Codes

2021 Jun 16

[ascl:2106.005] Marvin: Data access and visualization for MaNGA

Marvin searches, accesses, and visualizes data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Written in Python, it provides tools for easy efficient interaction with the MaNGA data via local files, files retrieved from the Science Archive Server, or data directly grabbed from the database. The tools come mainly in the form of convenience functions and classes for interacting with the data. Also available is a web app, Marvin-web, offers an easily accessible interface for searching the MaNGA data and visual exploration of individual MaNGA galaxies or of the entire sample, and a powerful query functionality that uses the API to query the MaNGA databases and return the search results to your python session. Marvin-API is the critical link that allows Marvin-tools and Marvin-web to interact with the databases, which enables users to harness the statistical power of the MaNGA data set.

2021 Jun 15

[ascl:2106.004] crowdsource: Crowded field photometry pipeline

crowdsource removes a rough sky (the median), find the brighter peaks and fits these sources, computes centroids, and then computes an improved PSF. With this model of the image, the code then iteratively subtracts it and recomputes the median to get a better sky estimate, finds fainter peaks, and calculates a better PSF. crowdsource performs at least four iterations, evaluates the results, and continues until certain thresholds are met. Once the iterative passes are complete, it makes one last pass. If no sources are detected and positions do not vary, it performs photometry for the existing list of stellar positions.

2021 Jun 14

[submitted] FRBSTATS: A web-based platform for visualization of fast radio burst properties

Fast radio bursts (FRBs) are currently one of the most important topics in astronomy and astrophysics. With only a few hundred events observed to date any information derived from the few successful detections is of great value. FRBSTATS is a user-friendly web interface that includes an open-access catalogue of FRBs published up to date, along with a highly accurate statistical overview of the observed events. The platform supports the retrieval of fundamental FRB data either directly through the FRBSTATS API, or in the form of a CSV/JSON-parsed database, while enabling the plotting of parameter distributions for a variety of visualizations. These features allow researchers to conduct more thorough population studies, while narrowing down the list of astrophysical models describing the origins and emission mechanisms behind these sources. Lastly, the platform provides a visualization tool that illustrates associations between primary bursts and repeaters, complementing basic repeater information provided by the Transient Name Server.

2021 Jun 12

[submitted] QFitsView FITS File Viewer Training Videos and Data

QFitsView is an application for visualisation, analysis and manipulation of FITS files, including spectra, images and data cubes. This series of videos is produced by Mark Durré of the Centre of Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne; the videos were co-sponsored with the Max-Plank Institute of Extraterrestrial Physics at Garching with the application's creators, Thomas Ott and Alex Agudo.

List of Videos
01 - Installation and Basic Functionality
02 - Image Controls
03 - Spectrum Controls
04 - Cube Spectrum Controls
05 - Cube Line Maps
06 - Spectral Line Fitting
07 - Image Surface Fitting
08 - FITS Header Editing
09 - DPUser Working with Data
10 - Data Arrays in DPUser
11 - DPUser Scripting
12 - Velocity Maps
13 - Multi Extension FITS and Text Files
14 - FITS Table Files
15 - Function Fitting
16 - Creating Colour Images
17 - Extra Functionality

YouTube Playlist -
Swinburne Commons Playlist -
Further Documentation - 97da-4878-9cb7-7c787ec5c709
Mark Durré's DPUser Libraries -
Original QFitsView ASCL Ref. -

2021 Jun 11

[ascl:2106.003] PyDoppler: Wrapper for Doppler tomography software

PyDoppler is a python-based wrapper for the Spruit Doppler tomography software dopmap (ascl:2106.002). PyDoppler is designed to study time-resolved spectroscopic datasets of accreting compact binaries. This code can produce a trail spectra of a dataset and create Doppler tomography maps. It is intended to be a light-weight code for single emission line datasets.

[ascl:2106.002] dopmap: Fast Doppler mapping program

dopmap constructs Doppler maps from the orbital variation of line profiles of (mass transferring) binaries. It uses an algorithm related to Richardson-Lucy iteration and includes an IDL-based set of routines for manipulating and plotting the input and output data.

[ascl:2106.001] KOBE: Kepler Observes Bern Exoplanets

KOBE (Kepler Observes Bern Exoplanets) adds the geometrical limitations and the physical detection biases of the transit method to a given population of theoretical planets. In addition, it also adds the completeness and reliability of a transit survey.

2021 Jun 10

[submitted] BiPoS1 - a computer programme for the dynamical processing of the initial binary star population

This is the first version of the Binary Population Synthesizer (BiPoS1). It allows to efficiently calculate binary distribution functions after the dynamical processing of a realistic population of binary stars during the first few Myr in the hosting embedded star cluster. It is particularly useful for generating a realistic birth binary population as an input for N-body simulations of globular clusters. Instead of time-consuming N-body simulations, BiPoS1 uses the stellar dynamical operator, which determines the fraction of surviving binaries depending on the binding energy of the binaries. The stellar dynamical operator depends on the initial star cluster density, as well as the time until the residual gas of the star cluster is expelled. At the time of gas expulsion, the dynamical processing of the binary population is assumed to effectively end due to the expansion of the star cluster related to that event. BiPoS1 has also a galactic-field mode, in order to synthesize the stellar population of a whole galaxy.

2021 May 31

[ascl:2105.022] PFITS: Spectra data reduction

PFITS performs data reduction of spectra, including dark removal and flat fielding; this software was a standard 1983 Reticon reduction package available at the University of Texas. It was based on the plotting program PCOSY by Gary Ferland, and in 1985 was updated by Andrew McWilliam.

[ascl:2105.021] Kepler's Goat Herd: Solving Kepler's equation via contour integration

Kepler's Goat Herd solves Kepler's equation using contour integration to solve the "geometric goat problem". The C++ code implements a variety of solution: 1.) Newton-Raphson: The quadratic Newton-Raphson root finder; 2.) Danby: The quartic root; 3.) Series: An elliptical series method; and 4.) Contour: A new method based on contour integration. Given an array of mean anomalies, an eccentricity and a desired precision, the code estimates the eccentric anomaly using each method. The accuracy of each approach is increased until the desired precision is reached, and timing is performed using the C++ chrono package.