Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with (i.e.,

Most Recently Added Codes

2015 Apr 22

[submitted] Python-CPL: Python interface for the ESO Common Pipeline Library

Python-CPL is a framework to configure and execute pipeline recipes written with the Common Pipeline Library (CPL) (ascl:1402.010) with Python2 or Python3. The input, calibration and output data can be specified as FITS files or as objects in memory. The package is used to implement the MUSE pipeline in the AstroWISE data management system.

2015 Apr 21

[submitted] DPI: symplectic mapping for binary star systems for Mercury software package

DPI is a FORTRAN77 library that supplies the symplectic mapping method for binary star systems (Chambers, Quintana, Duncan & Lissauer, 2002, AJ 123, 2884-2894) for the Mercury N-Body software package by John E. Chambers (ascl:1201.008). The binary symplectic mapping is implemented as a hybrid symplectic method (Chambers, 1999, MNRAS 304, 793-799) that allows close encounters and collisions between massive bodies and is therefore suitable for planetary accretion simulations. DPI is released under GPL 3 license.

2015 Apr 20

[ascl:1504.010] CosmoTransitions: Cosmological Phase Transitions

CosmoTransitions analyzes early-Universe finite-temperature phase transitions with multiple scalar fields. The code enables analysis of the phase structure of an input theory, determines the amount of supercooling at each phase transition, and finds the bubble-wall profiles of the nucleated bubbles that drive the transitions.

2015 Apr 19

[ascl:1504.009] Self-lensing binary code with Markov chain

The self-lensing binary code with Markov chain code was used to analyze the self-lensing binary system KOI-3278. It includes the MCMC modeling and the key figures.

[ascl:1504.008] MCSpearman: Monte Carlo error analyses of Spearman's rank test

Spearman’s rank correlation test is commonly used in astronomy to discern whether a set of two variables are correlated or not. Unlike most other quantities quoted in astronomical literature, the Spearman’s rank correlation coefficient is generally quoted with no attempt to estimate the errors on its value. This code implements a number of Monte Carlo based methods to estimate the uncertainty on the Spearman’s rank correlation coefficient.

[ascl:1504.007] WebbPSF: James Webb Space Telescope PSF Simulation Tool

WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.

2015 Apr 12

[submitted] samiDB: A Prototype Data Archive for Big Science Exploration

To serve the thousands of spectra, spectral hypercubes, and high-level science products that make up the SAMI Galaxy Survey, we have developed samiDB: and archive, database, and query engine rolled into one. Based on the versatile Hierarchical Data Format (HDF5), samiDB does not depend on relational database structures and hence lightens the setup and maintenance load imposed on science teams by metadata tables. The code, which is written in Python, covers the ingestion, querying, and exporting of data, as well as the automatic setup of an HTML schema browser. Some visualisation tools are planned for development in the near future. We hope this will make a useful tool for those smaller science teams that lack the means to hire professional archivists to set up there data back end, and instead adopt and adapt out maintenance-light data archive for Big Science.

2015 Apr 06

[ascl:1504.006] drive-casa: Python interface for CASA scripting

drive-casa provides a Python interface for scripting of CASA ( subroutines from a separate Python process, allowing for utilization alongside other Python packages which may not easily be installed into the CASA environment. This is particularly useful for embedding use of CASA subroutines within a larger pipeline. drive-casa runs plain-text casapy scripts directly; alternatively, the package includes a set of convenience routines which try to adhere to a consistent style and make it easy to chain together successive CASA reduction commands to generate a command-script programmatically.

[ascl:1504.005] chimenea: Multi-epoch radio-synthesis data imaging

Chimenea implements an heuristic algorithm for automated imaging of multi-epoch radio-synthesis data. It generates a deep image via an iterative Clean subroutine performed on the concatenated visibility set and locates steady sources in the field of view. The code then uses this information to apply constrained and then unconstrained (i.e., masked/open-box) Cleans to the single-epoch observations. This obtains better results than if the single-epoch data had been processed independently without prior knowledge of the sky-model. The chimenea pipeline is built upon CASA (ascl:1107.013) subroutines, interacting with the CASA environment via the drive-casa (ascl:1504.006) interface layer.

[ascl:1504.004] HOTPANTS: High Order Transform of PSF ANd Template Subtraction

HOTPANTS (High Order Transform of PSF ANd Template Subtraction) implements the Alard 1999 algorithm for image subtraction. It photometrically aligns one input image with another after they have been astrometrically aligned.