ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Aldcroft, T'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1304.002] Astropy: Community Python library for astronomy

Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.

[ascl:1306.016] Yaxx: Yet another X-ray extractor

Yaxx is a Perl script that facilitates batch data processing using Perl open source software and commonly available software such as CIAO/Sherpa, S-lang, SAS, and FTOOLS. For Chandra and XMM analysis it includes automated spectral extraction, fitting, and report generation. Yaxx can be run without climbing an extensive learning curve; even so, yaxx is highly configurable and can be customized to support complex analysis. yaxx uses template files and takes full advantage of the unique Sherpa / S-lang environment to make much of the processing user configurable. Although originally developed with an emphasis on X-ray data analysis, yaxx evolved to be a general-purpose pipeline scripting package.

[ascl:1904.009] deproject: Deprojection of two-dimensional annular X-ray spectra

Deproject extends Sherpa (ascl:1107.005) to facilitate deprojection of two-dimensional annular X-ray spectra to recover the three-dimensional source properties. For typical thermal models, this includes the radial temperature and density profiles. This basic method is used for X-ray cluster analysis and is the basis for the XSPEC (ascl:9910.005) model project. The deproject module is written in Python and is straightforward to use and understand. The basic physical assumption of deproject is that the extended source emissivity is constant and optically thin within spherical shells whose radii correspond to the annuli used to extract the specta. Given this assumption, one constructs a model for each annular spectrum that is a linear volume-weighted combination of shell models.