Searching for codes credited to 'Ciardi, B'
➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
[ascl:1303.022]
ionFR: Ionospheric Faraday rotation
Sotomayor-Beltran, C.;
Sobey, C.;
Hessels, J. W. T.;
de Bruyn, G.;
Noutsos, A.;
Alexov, A.;
Anderson, J.;
Asgekar, A.;
Avruch, I. M.;
Beck, R.;
Bell, M. E.;
Bell, M. R.;
Bentum, M. J.;
Bernardi, G.;
Best, P.;
Birzan, L.;
Bonafede, A.;
Breitling, F.;
Broderick, J.;
Brouw, W. N.;
Brueggen, M.;
Ciardi, B.;
de Gasperin, F.;
Dettmar, R.-J.;
van Duin, A.;
Duscha, S.;
Eisloeffel, J.;
Falcke, H.;
Fallows, R. A.;
Fender, R.;
Ferrari, C.;
Frieswijk, W.;
Garrett, M. A.;
Griessmeier, J.;
Grit, T.;
Gunst, A. W.;
Hassall, T. E.;
Heald, G.;
Hoeft, M.;
Horneffer, A.;
Iacobelli, M.;
Juette, E.;
Karastergiou, A.;
Keane, E.;
Kohler, J.;
Kramer, M.;
Kondratiev, V. I.;
Koopmans, L. V. E.;
Kuniyoshi, M.;
Kuper, G.;
van Leeuwen, J.;
Maat, P.;
Macario, G.;
Markoff, S.;
McKean, J. P.;
Mulcahy, D. D.;
Munk, H.;
Orru, E.;
Paas, H.;
Pandey-Pommier, M.;
Pilia, M.;
Pizzo, R.;
Polatidis, A. G.;
Reich, W.;
Roettgering, H.;
Serylak, M.;
Sluman, J.;
Stappers, B. W.;
Tagger, M.;
Tang, Y.;
Tasse, C.;
ter Veen, S.;
Vermeulen, R.;
van Weeren, R. J.;
Wijers, R. A. M. J.;
Wijnholds, S. J.;
Wise, M. W.;
Wucknitz, O.;
Yatawatta, S.;
Zarka, P.
ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.
[ascl:1503.006]
AMADA: Analysis of Multidimensional Astronomical DAtasets
AMADA allows an iterative exploration and information retrieval of high-dimensional data sets. This is done by performing a hierarchical clustering analysis for different choices of correlation matrices and by doing a principal components analysis in the original data. Additionally, AMADA provides a set of modern visualization data-mining diagnostics. The user can switch between them using the different tabs.