ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Fouesneau, M'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1407.018] AstroML: Machine learning and data mining in astronomy

Written in Python, AstroML is a library of statistical and machine learning routines for analyzing astronomical data in python, loaders for several open astronomical datasets, and a large suite of examples of analyzing and visualizing astronomical datasets. An optional companion library, astroML_addons, is available; it requires a C compiler and contains faster and more efficient implementations of certain algorithms in compiled code.

[ascl:1702.011] Chempy: A flexible chemical evolution model for abundance fitting

Chempy models Galactic chemical evolution (GCE); it is a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of 5-10 parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: e.g. the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF) and the incidence of supernova of type Ia (SN Ia). Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets, performing essentially as a chemical evolution fitting tool. Chempy can be used to confront predictions from stellar nucleosynthesis with complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

ChempyMulti (ascl:1909.006) is available as an update to the ChempyScoring package.

[ascl:1908.013] BEAST: Bayesian Extinction And Stellar Tool

BEAST (Bayesian Extinction and Stellar Tool) fits the ultraviolet to near-infrared photometric SEDs of stars to extract stellar and dust extinction parameters. The stellar parameters are age (t), mass (M), metallicity (M), and distance (d). The dust extinction parameters are dust column (Av), average grain size (Rv), and mixing between type A and B extinction curves (fA).

[ascl:1909.006] ChempyMulti: Multi-star Bayesian inference with Chempy

ChempyMulti is an update to Chempy (ascl:1702.011) and provides yield table scoring and multi-star Bayesian inference. This replaces the ChempyScoring package in Chempy. Chempy is a flexible one-zone open-box chemical evolution model, incorporating abundance fitting and stellar feedback calculations. It includes routines for parameter optimization for simulations and observational data and yield table scoring.