➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.
dips detrends timeseries of strictly periodic signals. It does not assume any functional form for the signal or the background or the noise; it disentangles the strictly periodic component from everything else. It has been used for detrending Kepler, K2 and TESS timeseries of periodic variable stars, eclipsing binary stars, and exoplanets.
Eclipsing Binaries via Artificial Intelligence (EBAI) automates the process of solving light curves of eclipsing binary stars. EBAI is based on the back-propagating neural network paradigm and is highly flexible in construction of neural networks. EBAI comes in two flavors, serial (ebai) and multi-processor (ebai.mpi), and can be run in training, continued training, and recognition mode.
SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.