Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Rybizki, J'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1702.011] Chempy: A flexible chemical evolution model for abundance fitting

Chempy models Galactic chemical evolution (GCE); it is a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of 5-10 parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: e.g. the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF) and the incidence of supernova of type Ia (SN Ia). Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets, performing essentially as a chemical evolution fitting tool. Chempy can be used to confront predictions from stellar nucleosynthesis with complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

[ascl:1811.018] gdr2_completeness: GaiaDR2 data retrieval and manipulation

gdr2_completeness queries Gaia DR2 TAP services and divides the queries into sub-queries chunked into arbitrary healpix bins. Downloaded data are formatted into arrays. Internal completeness is calculated by dividing the total starcount and starcounts with an applied cut (e.g., radial velocity measurement and good parallax). Independent determination of the external GDR2 completeness per healpix (level 6) and G magnitude bin (3 coarse bins: 8-12,12-15,15-18) is inferred from a crossmatch with 2MASS data. The overall completeness of a specific GDR2 sample can be approximated by multiplying the internal with the external completeness map, which is useful when data are compared to models thereof. Jupyter notebooks showcasing both utilities enable the user to easily construct the overall completeness for arbitrary samples of the GDR2 catalogue.

[ascl:1901.005] Galaxia_wrap: Galaxia wrapper for generating mock stellar surveys

Galaxia_wrap is a python wrap around the popular Galaxia tool (ascl:1101.007) for generating mock stellar surveys, such as a magnitude limited survey, using a built-in Galaxy model or directly from n-body data. It also offers n-body functionality and has been used to infer the age distribution of a specific stellar tracer population.