**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1507.005]
slimplectic: Discrete non-conservative numerical integrator

slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.

[ascl:1804.016]
surrkick: Black-hole kicks from numerical-relativity surrogate models

surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

[ascl:1809.007]
surfinBH: Surrogate final black hole properties for mergers of binary black holes

surfinBH predicts the final mass, spin and recoil velocity of the remnant of a binary black hole merger. Trained directly against numerical relativity simulations, these models are extremely accurate, reproducing the results of the simulations at the same level of accuracy as the simulations themselves. Fits such as these play a crucial role in waveform modeling and tests of general relativity with gravitational waves, performed by LIGO.

[ascl:1811.003]
binaryBHexp: On-the-fly visualizations of precessing binary black holes

binaryBHexp (binary black hole explorer) uses surrogate models of numerical simulations to generate on-the-fly interactive visualizations of precessing binary black holes. These visualizations can be generated in a few seconds and at any point in the 7-dimensional parameter space of the underlying surrogate models. These visualizations provide a valuable means to understand and gain insights about binary black hole systems and gravitational physics such as those detected by the LIGO gravitational wave detector.