ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Viti, S'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1303.004] UCL_PDR: Time dependent photon-dissociation regions model

UCL_PDR is a time dependent photon-dissociation regions model that calculates self consistently the thermal balance. It can be used with gas phase only species as well as with surface species. It is very modular, has the possibility of accounting for density and pressure gradients and can be coupled with UCL_CHEM as well as with SMMOL. It has been used to model small scale (e.g. knots in proto-planetary nebulae) to large scale regions (high redshift galaxies).

[ascl:1303.006] UCL_CHEM: time and depth dependent gas-grain chemical model

UCL_CHEM is a time and depth dependent gas-grain chemical model that can be used to estimate the fractional abundances (with respect to hydrogen) of gas and surface species in every environment where molecules are present. The model includes both gas and surface reactions. The code starts from the most diffuse state where all the gas is in atomic form and evolve sthe gas to its final density. Depending on the temperature, atoms and molecules from the gas freeze on to the grains and they hydrogenate where possible. The advantage of this approach is that the ice composition is not assumed but it is derived by a time-dependent computation of the chemical evolution of the gas-dust interaction process. The code is very modular, has been used to model a variety of regions and can be coupled with the UCL_PDR and SMMOL codes.

[ascl:1803.010] 3D-PDR: Three-dimensional photodissociation region code

3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.