Bjet_MCMC automatically models multiwavelength spectral energy distributions of blazars, considering one-zone synchrotron-self-Compton (SSC) model with or without the addition of external inverse-Compton process from the thermal emission of the nucleus. The code also contains manual fitting functionalities for multi-zone SSC modeling. Bjet_MCMC is built as an MCMC python wrapper around the C++ code Bjet.
CLUES (CLustering UnsupErvised with Sequencer) analyzes spectral and IFU data. This fully interpretable clustering tool uses machine learning to classify and reduce the effective dimensionality of data sets. It combines multiple unsupervised clustering methods with multiscale distance measures using Sequencer (ascl:2105.006) to find representative end-member spectra that can be analyzed with detailed mineralogical modeling and follow-up observations. CLUES has been used on Spitzer IRS data and debris disk science, and can be applied to other high-dimensional spectral data sets, including mineral spectroscopy in general areas of astrophysics and remote sensing.
OK Binaries is a tool for identifying suitable calibration binaries from the Washington Double Star (WDS) Sixth Orbit Catalog. It calculates orbital positions at any epoch, propagates uncertainties using Monte Carlo sampling, and generates orbit plots. The web app includes automated daily updates of binary positions and a searchable interface with filters for position, magnitude, separation, and other orbital parameters. OK Binaries can be used online, as a standalone offline browser app, or via the command line.
pinc ("profiles in cosmology") computes profile likelihoods in cosmology; it can also determine the (boundary-corrected) confidence intervals with the graphical construction. The code uses a simulated annealing scheme and interfaces with MontePython (ascl:1805.027). pinc consists of three short scripts; these automatically set the relevant parameters in MontePython, submit the minimization chains, and analyze the results.
CAMEL (Cosmological Analysis with Minuit Exploration of the Likelihood) performs cosmological parameters estimations using best fits, Monte-Carlo Markov Chains, and profile-likelihoods. Widely used in Planck satellite data analysis, by default it employs CLASS (ascl:1106.020) to compute all relevant cosmological quantities, but any other Boltzmann solver can easily be plugged in.
Procoli extracts profile likelihoods in cosmology. It wraps MontePython (ascl:1805.027), the fast sampler written specifically for CLASS (ascl:1106.020). All likelihoods available for use with MontePython are hence immediately available for use. Procoli is based on a simulated-annealing optimizer to find the global maximum likelihoods value as well as the maximum likelihood points along the profile of any use input parameter.
SAUSERO processes raw science frames to address noise, cosmetic defects, and pixel heterogeneity, preparing them for photometric analysis for OSIRIS+ (Gran Telescopio Canarias). Correcting these artifacts is a critical prerequisite for reliable scientific analysis. The software applies observation-specific reduction steps, ensuring optimized treatment for different data types. Developed with a focus on simplicity and efficiency, SAUSERO streamlines the reduction pipeline, enabling researchers to obtain calibrated data ready for photometric studies.
Would you like to view a random code?