ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry and repository for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).


Most Recently Added Codes

2025 Jan 31

[ascl:2501.010] SpectralRadex: Spectral modeling and RADEX

SpectralRadex runs RADEX (ascl:1010.075) directly from Python and creates model spectra from RADEX outputs. The package uses F2PY (Fortran to Python interface generator) to compile a version of RADEX written in modern Fortran, most importantly dropping the use of common blocks. As a result, running a RADEX model creates no subprocesses and can be parallelized. SpectralRadex uses the RADEX calculated line opacities and excitation temperatures to calculate the brightness temperature as a function of frequency. This allows observed spectra to be modeled in Python in a non-LTE fashion.

[ascl:2501.009] breads: Broad Repository for Exoplanet Analysis, Discovery, and Spectroscopy

breads (Broad Repository for Exoplanet Analysis, Discovery, and Spectroscopy) provides a toolkit for data analyses in astronomical spectroscopy of exoplanets, in particular frameworks for rigorous forward modeling of observational data to achieve physical inferences with reduced systematic biases. Users choose a data class, a forward model function, and a fitting strategy. Data classes normalize the data format, simplifying reduction across different spectrographs while allowing for specific behaviors of each instrument to also be coded into their own specific class. breads provides specific functionality for modeling data from JWST NIRSpec, Keck OSIRIS, and Keck KPIC, but the underlying mathematical framework is more general.

[ascl:2501.008] ECCOplanets: Simulation and analysis of rocky planets

ECCOplanets simulates the formation of rocky planets in chemical equilibrium (based on a Gibbs free energy minimisation). The package includes tools for analyzing the simulated planet and two databases, one of thermochemical data and the other of stellar abundance patterns. ECCOplanets provides a simplified starting point for getting an approximate idea of the variety of planetary compositions based on the variety of stellar compositions.

[ascl:2501.007] NEXO: Nonsingular Estimator for EXoplanet Orbits

NEXO (Nonsingular Estimator for EXoplanet Orbits) fits exoplanet orbits to direct astrometric measurements using nonlinear batch estimation and nonsingular orbital elements. The estimation technique is based on the unscented transform, which approximates probability distributions using finite, deterministic sets of weighted sample points. Furthermore, NEXO uses Gaussian mixtures to account for the strong nonlinearities in the measurement model. As a fitting basis, it uses a set of orbital elements developed specifically for directly observed exoplanets, combining features of the Thiele–Innes constants and the Cohen–Hubbard nonsingular elements.

[ascl:2501.006] ExoTR: Bayesian inverse retrieval algorithm to interpret exoplanetary transmission spectra

ExoTR (Exoplanetary Transmission Retrieval) interprets exoplanetary transmission spectra using a Bayesian inverse retrieval algorithm. The code can be used in two ways; the first is by leveraging the physics forward model only to generate synthetic planetary atmospheric transmission spectra (including the addition of errorbars). The second way is by using a retrieval routine based on nested sampling (i.e., MultiNest (ascl:1109.006)) to extract physical and chemical information from the input transmission spectra.

[ascl:2501.005] CIANNA: Convolutional Interactive Artificial Neural Networks by/for Astrophysicists

The CIANNA framework creates and trains deep-learning models for astronomical data analysis. Functionalities and optimizations are added based on relevance to astrophysical problem-solving. CIANNA builds and trains a wide variety of neural network architectures for various tasks through a high-level Python interface. It supports both computing on CPU and GPU acceleration through low-level CUDA programming, taking advantage of AI-dedicated hardware substructures. CIANNA distinguishes itself by its low latency, allowing tight integration with other codes.

[ascl:2501.004] tshirt: Time Series Helper and Integration Reduction Tool

tshirt (Time Series Helper and Integration Reduction Tool) processes raw data on exoplanet systems for time series science. It reduces raw data to produce flat fields, subtracts bias, and corrects gain. tshirt also performs photometric and optimal spectral extraction of light curves.

[ascl:2501.003] Haystacks: High-fidelity planetary system models for simulating exoplanet imaging

Haystacks creates high-fidelity spatial and spectral models of complete planetary systems including star, planets, interplanetary dust, and astrophysical background sources. These models are intended for use in simulations of direct imaging and spectroscopy with high-contrast instruments on exoplanet missions to prepare future exoEarth observations.

[ascl:2501.002] pympc: Minor planet checking

pympc performs checks for the presence of minor and major Solar System bodies at specified coordinates. Orbital elements from the Minor Planet Center are used to propagate orbits to determine the position of asteroids, comets, NEOS, planets and major moons at the request epoch. Topocentric corrections are included to allow for observatory-specific positions. The requested position can also be checked for being within the Hill Sphere (in projection) of any Solar System planet.

[ascl:2501.001] CAFE: Continuum And Feature Extraction tool

CAFE (Continuum And Feature Extraction) fits JWST IFU data; the code is a Python version of the original CAFE IDL software for fitting Spitzer/IRS spectra. The code contains two main tools: (1) the CAFE Region Extraction Tool Automaton (CRETA) and (2) the CAFE spectral fitting tool, or fitter. CRETA performs single-position and full-grid extractions from JWST IFU datasets; that is, from pipeline-processed cubes obtained with the NIRSpec IFU and MIRI MRS instruments. The CAFE fitter uses the spectra extracted by CRETA (or spectra provided by the user) and performs a spectral decomposition of the continuum emission (stellar and/or dust), as well as of a variety of common spectral features (in emission and absorption) present in the near- and mid-IR spectra of galaxies, including prominent, broad emission from small grains and molecules such as Polycyclic Aromatic Hydrocarbons (PAHs). The full dust treatment (size and composition) performed by CAFE allows the dust continuum model components to fit not only spectra from typical star-forming galaxies, but also those from more extreme, heavily dust-obscured starburst galaxies, such as luminous infrared galaxies (LIRGs and ULIRGs), active galactic nuclei (AGN), or very luminous quasars.