The Astrophysics Source Code Library (ASCL) is a free online registry and repository for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).
This project presents a comprehensive spectroscopic analysis of O and B-type stars, neutron stars, and white dwarfs, with a focus on the detection of helium (He) and oxygen (O) in stellar atmospheres. By leveraging data from the Sloan Digital Sky Survey (SDSS) and utilizing tools such as Astropy, Astroquery, and Specutils, the project aims to identify key spectral lines of helium and oxygen, as well as the formation of heliox (OHe) molecules. The methodology involves querying SDSS for relevant spectral data, filtering and analyzing it based on stellar classification, and visualizing the results using advanced techniques. The findings contribute to the understanding of stellar evolution, chemical processes, and the role of these elements in various stellar classes. Additionally, the project incorporates interactive data exploration with Aladin Lite and Simbad, offering a robust framework for future astrophysical research.
This notebook provides a comprehensive approach for analyzing and visualizing astronomical data from FITS (Flexible Image Transport System) files, focusing on moment maps derived from molecular line emissions within the galaxy NGC 0628. The analysis involves applying various image processing techniques to handle corrupted pixels, reconstruct images, and enhance the quality of moment maps. The notebook also demonstrates how to simulate super-resolution to improve the spatial resolution of the data. By utilizing Gaussian filtering, median filtering, and contrast enhancement, the approach improves the clarity and precision of the data, making it suitable for detailed astrophysical studies. This tool serves as an efficient method for processing and visualizing large-scale astronomical datasets for further analysis and scientific interpretation.
NEMESISPY infers the atmospheric properties of exoplanets, such as chemical composition, using spectroscopic data. The package calculates radiative transfer using the correlated-k approximation and for parametric atmospheric modelling. NEMESISPY is a Python implementation of the well-established Fortran NEMESIS library (ascl:2210.009), which has been applied to the atmospheric retrievals of both solar system planets and exoplanets employing numerous different observing geometries.
IcyDwarf calculates the coupled physical-chemical evolution of an icy dwarf planet or moon. The code calculates the thermal evolution of an icy planetary body (moon or dwarf planet), with no chemistry, but with rock hydration, dehydration, hydrothermal circulation, core cracking, tidal heating, and porosity; the depth of cracking and a bulk water:rock ratio by mass in the rocky core are also computed. It also calculates whether cryovolcanism is possible by the exsolution of volatiles from cryolavas. IcyDwarf also determines the equilibrium fluid and rock chemistries resulting from water-rock interaction in subsurface oceans in contact with a rocky core, up to 200ºC and 1000 bar.
SMINT (Structure Model INTerpolator) obtains posterior distributions on the H/He or H2O mass fraction of a planet; its interface is user-friendly. The parameters of the planet of interest are input with specifications on the priors that should be used. SMINT returns publication-ready plots presenting the joint parameters constraints obtained from interpolating the interior models grid of interest as well as confidence intervals for each parameter.
DarkMatters calculates multi-frequency and multi-messenger emissions from WIMP annihilation and decay. This can be done both for standard channels and custom models, with the ability to produce surface brightnesses and integrated fluxes as well as maps in FITS format to compare to actual data. DarkMatters uses an accelerated ADI solver such as GALPROP (ascl:1010.028) for electron diffusion with an innovative sparse matrix approach. Additionally, there is the option to use a Green's function approximate solution (implemented in both C++ and Python).
The numerical modeling code DustPOL-py calculates the multi-wavelength polarization degree of absorption and thermal dust emission based on Radiative Torque alignment (RAT-A), Magnetically enhanced RAT (MRAT) and Radiative Torque Disruption (RAT-D). The code saves the output files (wavelength and degree of polarization) for further analysis and is idealization for diffuse ISM, molecular clouds and star-forming regions; it also predicts the polarization spectrum for one- or two-dust layers. A web-interface GUI for DustPOL-py is also available.
DArk Matter SPIkes (DAMSPI) analyzes dark matter spikes around Intermediate Mass Black Holes (IMBHs) in the Milky Way. It extracts an IMBH catalog with the corresponding dark matter spike parameters from EAGLE simulations to probe a potential gamma-ray signal from dark matter self-annihilation. The catalog includes, among others, the coordinates, mass, formation redshift, and spike parameters for each individual IMBH.
jaxspec performs statistical inference on X-ray spectra. It loads an X-ray spectrum (in the OGIP standard), defines a spectral model from the implemented components, and calculates the best parameters using state-of-the-art Bayesian approaches. The code is built on top of JAX (ascl:2111.002) to provide just-in-time compilation and automatic differentiation of the spectral models, enabling the use of sampling algorithms. jaxspec is written in pure Python and is not dependent on HEASoft (ascl:1408.004).
mochi_class extends the hi_class code (ascl:1808.010), itself a patch to the Einstein-Boltzmann solver CLASS (ascl:1106.020). It replaces α-functions by stable basis to ensure stability and takes general functions of time as input, including the dark energy equation of state or its normalized background energy-density. mochi_class provides stability test checking for mathematical (classical) instabilities in the scalar field fluctuations, and also includes a GR approximation scheme, among other new capabilities.