ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 3795-7588 of 3800 (3696 ASCL, 104 submitted)

Previous12
Next
Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[submitted] astromorph: self-supervised machine learning pipeline for astronomical morphology analysis

astromorph performs an automatic classification of astronomical objects based on their morphology using machine learning in a self-supervised manner. Written in Python, the pipeline is an implementation for astronomical images in FITS-format files of the Boot-strap Your Own Latents (BYOL; Grill et al. 2020) method, which does not require labelling of the training data.

[submitted] COBRA: Optimal Factorization of Cosmological Observables

We introduce COBRA (Cosmology with Optimally factorized Bases for Rapid Approximation), a novel framework for rapid computation of large-scale structure observables. COBRA separates scale dependence from cosmological parameters in the linear matter power spectrum while also minimising the number of necessary basis terms, thus enabling direct and efficient computation of derived and nonlinear observables. Moreover, the dependence on cosmological parameters is efficiently approximated using radial basis function interpolation. We apply our framework to decompose the linear matter power spectrum in the standard LCDM scenario, as well as by adding curvature, dynamical dark energy and massive neutrinos, covering all redshifts relevant for Stage IV surveys. With only a dozen basis terms, COBRA reproduces exact Boltzmann solver calculations to 0.1% precision, which improves further to 0.02% in the pure LCDM scenario. Using our decomposition, we recast the one-loop redshift space galaxy power spectrum in a separable minimal-basis form, enabling $\sim 4000$ model evaluations per second at 0.02% precision on a single thread. This constitutes a considerable improvement over previously existing methods (e.g., FFTLog) opening a new window for efficient computations of higher loop and higher order correlators involving multiple powers of the linear matter power spectra. The resulting factorisation can also be utilised in clustering, weak lensing and CMB analyses. Our implementation is publicly available at https://github.com/ThomasBakx/cobra.

[submitted] arctic_weather: Analysis of meteorological conditions from High Arctic weatherstations

arctic_weather reports analysis of meteorological data recorded from High Arctic weatherstations (called Inuksuit) deployed on coastal mountains north of 80 degrees on Ellesmere Island Canada from 2006 through 2009, along with clear-sky fractions from horizon-viewing sky-monitoring cameras. The code calculates solar and lunar elevations, and so allows correlation of polar nighttime to the development of prevailing thermal inversion conditions in winter, and statistical comparison to other optical/infrared observatory sites.

[submitted] allsky: Estimate atmospheric transparency via photometry with PASI at Eureka/PEARL, compare to other sites

allsky performs photometry of Polaris with the Polar Environment Atmospheric Research Laboratory (PEARL) All-Sky Camera (PASI) to report transparency measurements, with comparison to conditions at other observatories worldwide. The code site provides a tarfile of PASI data obtained near Eureka, on Ellesmere Island Canada in darktime of 2008/09 and 2009/10 along with associated meteorological data. The code employs a simple atmospheric thermal inversion model, with a power-law fit to ice-crystal attenuation, allowing direct comparison of PEARL dark-time photometric-sky statistics to mid-latitude sites such as Maunakea.

[submitted] arctic_mass_dimm: Estimate seeing conditions measured with MASS/DIMM at Eureka/PEARL, compare to other sites

arctic_mass_dimm reduces data from the Multi-Aperture Seeing Sensor (MASS) and Differential Image Motion Monitor (MASS) obtained from the Polar Environment Atmospheric Research Laboratory (PEARL), reporting seeing conditions, and comparing to other observatories. The code site provides a tarfile of all MASS and DIMM data obtained near Eureka, on Ellesmere Island Canada in 2011/12 along with associated meteorological data. The code employs a simple two-component atmospheric model to allow comparison of PEARL to mid-latitude sites such as Maunakea.

[submitted] infrared_comparison: Compare the thermal-infrared sky brightness of polar and mid-latitude sites

infrared_comparison compares the downwelling infrared radiation, or sky spectral brightness, of arctic/antarctic astronomical observing sites with the best mid-latitude mountain sites. The code site provides a tarfile of Fourier-transform spectra from 3.3 microns 20 microns, obtained near Eureka, on Ellesmere Island Canada, along with meteorological data. The code can compare these via an atmospheric thermal-inversion model to reported values for South Pole and other mid-latitude sites, such as Maunakea.

Previous12
Next

Would you like to view a random code?