ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Abdalla, Filipe'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1910.014] ANNz2: Estimating photometric redshift and probability density functions using machine learning methods

ANNz2, a newer implementation of ANNz (ascl:1209.009), utilizes multiple machine learning methods such as artificial neural networks, boosted decision/regression trees and k-nearest neighbors to measure photo-zs based on limited spectral data. The code dynamically optimizes the performance of the photo-z estimation and properly derives the associated uncertainties. In addition to single-value solutions, ANNz2 also generates full probability density functions (PDFs) in two different ways. In addition, estimators are incorporated to mitigate possible problems of spectroscopic training samples which are not representative or are incomplete. ANNz2 is also adapted to provide optimized solutions to general classification problems, such as star/galaxy separation.

[ascl:1606.015] FLASK: Full-sky Lognormal Astro-fields Simulation Kit

FLASK (Full-sky Lognormal Astro-fields Simulation Kit) makes tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields; it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges. It is C++ code parallelized with OpenMP; FLASK generates fast full-sky simulations of cosmological large-scale structure observables such as multiple matter density tracers (galaxies, quasars, dark matter haloes), CMB temperature anisotropies and weak lensing convergence and shear fields. The mutiple fields can be generated tomographically in an arbitrary number of redshift slices and all their statistical properties (including cross-correlations) are determined by the angular power spectra supplied as input and the multivariate lognormal (or Gaussian) distribution assumed for the fields. Effects like redshift space distortions, doppler distortions, magnification biases, evolution and intrinsic aligments can be introduced in the simulations via the input power spectra which must be supplied by the user.

[ascl:1712.007] SFoF: Friends-of-friends galaxy cluster detection algorithm

SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.