Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Barden, Marco'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1203.002] GALAPAGOS: Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor

GALAPAGOS, Galaxy Analysis over Large Areas: Parameter Assessment by GALFITting Objects from SExtractor (ascl:1010.064), automates source detection, two-dimensional light-profile Sersic modelling and catalogue compilation in large survey applications. Based on a single setup, GALAPAGOS can process a complete set of survey images. It detects sources in the data, estimates a local sky background, cuts postage stamp images for all sources, prepares object masks, performs Sersic fitting including neighbours and compiles all objects in a final output catalogue. For the initial source detection GALAPAGOS applies SExtractor, while GALFIT (ascl:1104.010) is incorporated for modelling Sersic profiles. It measures the background sky involved in the Sersic fitting by means of a flux growth curve. GALAPAGOS determines postage stamp sizes based on SExtractor shape parameters. In order to obtain precise model parameters GALAPAGOS incorporates a complex sorting mechanism and makes use of multiplexing capabilities. It combines SExtractor and GALFIT data in a single output table. When incorporating information from overlapping tiles, GALAPAGOS automatically removes multiple entries from identical sources. GALAPAGOS is programmed in the Interactive Data Language, IDL. A C implementation of the software, GALAPAGOS-C (ascl:1408.011), is available.

[ascl:1203.004] FERENGI: Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images

Bandpass shifting and the (1+z)5 surface brightness dimming (for a fixed width filter) make standard tools for the extraction of structural parameters of galaxies wavelength dependent. If only few (or one) observed high-res bands exist, this dependence has to be corrected to make unbiased statements on the evolution of structural parameters or on galaxy subsamples defined by morphology. FERENGI artificially redshifts low-redshift galaxy images to different redshifts by applying the correct cosmological corrections for size, surface brightness and bandpass shifting. A set of artificially redshifted galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low-redshift (v<7000 km s-1) images as input has been created to use as a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions, and other galaxy properties that are potentially sensitive to resolution, surface brightness, and bandpass issues. The data sets are also available for download from the FERENGI website.