**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1806.001]
feets: feATURE eXTRACTOR FOR tIME sERIES

feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

[ascl:1904.025]
Properimage: Image coaddition and subtraction

Properimage processes astronomical image; it is specially written for coaddition and image subtraction. It performs the statistical proper-coadd of several images using a spatially variant PSF estimation, and also difference image analysis by several strategies developed by others. Most of the code is based on a class called SingleImage, which provides methods and properties for image processing such as PSF determination.

[ascl:1808.003]
CPF: Corral Pipeline Framework

Cabral, Juan; Sanchez, Bruno; Beroiz, Martin; Dominguez, Mariano; Lares, Marcelo; Gurovich, Sebastian; Granitto, Pablo

Corral generates astronomical pipelines. Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. Written in Python, Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling custom data models, processing stages, and communication alerts. It also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities.

[ascl:1912.013]
GriSPy: Fixed-radius nearest neighbors grid search in Python

Chalela, Martín; Sillero, Emanuel; Pereyra, Luis; Garcia, Mario A.; Cabral, Juan B.; Lares, Marcelo; Merchán, Manuel

GriSPy (Grid Search in Python) uses a regular grid search algorithm for quick fixed-radius nearest-neighbor lookup. It indexes a set of k-dimensional points in a regular grid providing a fast approach for nearest neighbors queries. Optional periodic boundary conditions can be provided for each axis individually. GriSPy implements three types of queries: *bubble*, *shell* and the *nth-nearest*, and offers three different metrics of interest in astronomy: the *Euclidean* and two distance functions in spherical coordinates of varying precision, *haversine* and *Vincenty*. It also provides a custom distance function. GriSPy is particularly useful for large datasets where a brute-force search is not practical.

[submitted]
pycf3 - Cosmicflows-3 Distance-Velocity Calculator client for Python

The project is a simple Python client for Cosmicflows-3 Distance-Velocity Calculator at distances less than 400 Mpc (http://edd.ifa.hawaii.edu/CF3calculator/)

Compute expectation distances or velocities based on smoothed velocity field from the Wiener filter model of https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5438G/abstract.

[ascl:2005.007]
Carpyncho: VVV Catalog browser toolkit

Carpyncho browses catalogs to search for and characterize time variable data of the Vista Variables in the Via Lactea (VVV) Survey. The stacked pawprint data from the Cambridge Astronomical Science Unit's (CASU) Vista Data Flow System (VDFS) v>= 1.3 catalogs have been crossed matched with the VDFS CASU v1.3 tile catalogs into Parquet files, allowing detection and classification of periodic variables within this dataset.

[ascl:2006.001]
HEARSAY: Simulations for the probability of alien contact

HEARSAY computes simulations of the causal contacts between emitters in the Galaxy. It implements the Stochastic Constrained Causal Contact Network (SC3Net) model and explores the parameter space of the model for the emergence of communicating nodes through Monte Carlo simulations and analyzes their causal connections. This model for the abundance and duration of civilizations is based on minimal assumptions and three free parameters, with focus on the statistical properties of empirical models instead of an interpretable model with variables to be determined by observation.