**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1010.046]
indexf: Line-strength Indices in Fully Calibrated FITS Spectra

This program measures line-strength indices in fully calibrated FITS spectra. By "fully calibrated" one should understand wavelength and relative flux-calibrated data. Note that the different types of line-strength indices that can be measured with indexf (see below) do not require absolute flux calibration. If even a relative flux-calibration is absent (or deficient), the derived indices should be transformed to an appropriate spectrophotometric system. The program can also compute index errors resulting from the propagation of random errors (e.g. photon statistics, read-out noise). This option is only available if the user provides the error spectrum as an additional input FITS file to indexf. The error spectrum must contain the unbiased standard deviation (and not the variance!) for each pixel of the data spectrum. In addition, indexf also estimates the effect of errors on radial velocity. For this purpose, the program performs Monte Carlo simulations by measuring each index using randomly drawn radial velocities (following a Gaussian distribution of a given standard deviation). If no error file is employed, the program can perform numerical simulations with synthetic error spectra, the latter generated from the original data spectra and assuming randomly generated S/N ratios.

[ascl:1104.008]
Rmodel: Determining Stellar Population Parameters

This program determines stellar population parameters (e.g. age, metallicity, IMF slope,...), using as input a pair of line-strength indices, through the interpolation in SSP model predictions. Both linear and bivariate fits are computed to perform the interpolation.

[ascl:1508.003]
REDUCEME: Long-slit spectroscopic data reduction and analysis

Cardiel, N; Gorgas, J.; Pedraz, S.; Cenarro, J.; Alonso, O; Gil de Paz, A.; García-Dabó, E.; Sánchez-Blázquez, P.; Mármol-Queraltó, E.; Toloba, E.

The astronomical data reduction package REDUCEME reduces and analyzes long-slit spectroscopic data. The package uses the unformatted FORTRAN raw data format, so requires FITS files be transformed to REDUCEME format; the reverse operation (from REDUCEME to FITS format) is also available. The package is a set of programs written in FORTRAN 77 and includes shell scripts (using the C shell syntax) to perform routine tasks; it can be extended by the inclusion of external programs. REDUCEME uses PGPLOT (ascl:1103.002) for line plots and images, and a subset of subroutines, called BUTTON, enables the user to communicate interactively with the image display employing graphic buttons. One advantage of using REDUCEME is that for each image an associated error image can also be processed throughout the reduction process, allowing for a careful control of the error propagation.

[ascl:2007.024]
CaTffs: Calcium triplet indexes

CaTffs predicts the strength of calcium triplet indices (CaT*, PaT and CaT) on the basis of empirical fitting functions and performs required interpolations between the different local functions. Together with the indices predictions, the program also computes the random errors associated to such predictions resulting from the covariance matrices of the fits (for the indices CaT* and PaT). This ensures a reliable error index estimation for any combination of input atmospheric parameters.