ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Chen, Mi'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1909.009] CLOVER: Convolutional neural network spectra identifier and kinematics predictor

CLOVER (Convnet Line-fitting Of Velocities in Emission-line Regions) is a convolutional neural network (ConvNet) trained to identify spectra with two velocity components along the line of sight and predict their kinematics. It works with Gaussian emission lines (e.g., CO) and lines with hyperfine structure (e.g., NH3). CLOVER has two prediction steps, classification and parameter prediction. For the first step, CLOVER segments the pixels in an input data cube into one of three classes: noise (i.e., no emission), one-component (emission line with single velocity component), and two-component (emission line with two velocity components). For the pixels identified as two-components in the first step, a second regression ConvNet is used to predict centroid velocity, velocity dispersion, and peak intensity for each velocity component.

[ascl:2507.023] Capivara: Scalable spectral-based segmentation package

Capivara implements a spectral-based segmentation method for Integral Field Unit (IFU) data cubes. The code uses hierarchical clustering in the spectral domain, grouping similar spectra to improve the signal-to-noise ratio without compromising astrophysical similarity among regions, and leverages advanced matrix operations via torch for GPU acceleration.