➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.
RAPTOR produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime, is hardware-agnostic and may be compiled and run on both GPUs and CPUs. RAPTOR is useful for studying accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fastlight and slow-light paradigms.
Cobra uses single pulse time series data to search for and time pulsars, performing a fully phase coherent timing analysis. The GPU-accelerated Bayesian analysis package, written in Python, incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries. Cobra builds a model pulse train that incorporates effects such as aliasing, scattering and binary motion and a simple Gaussian profile and compares this directly to the data; the software can thus combine data over multiple frequencies, epochs, or even across telescopes.
CoastGuard reduces Effelsberg data; it is written in python and based on PSRCHIVE (ascl:1105.014). Though primarily designed for Effelsberg PSRIX data, it contains components sufficiently general for use with psrchive-compatible data files from other observing systems. In particular, the radio frequency interference (RFI) removal algorithm has been applied to data from the Parkes Telescope and has also been adopted by the LOFAR pulsar timing data reduction pipeline.
clfd (clean folded data) implements GPU-accelerated smart interference removal algorithms to be used on folded pulsar search and pulsar timing data. The code converts each source profile to a small set of representative features, flagging outliers in the resulting feature space. clfd further visualizes the outlier flagging process, as well as the resulting two-dimensional time-frequency mask that is applied to the clean archive. The code provides access to cleaning algorithms that were initially developed for the High Time Resolution Universe (HTRU) survey which found several pulsars.
DarkRayNet uses recurrent neural networks (RNNs) to quickly simulate antiprotons, antideuterons, protons and Helium cosmic ray (CR) spectra at Earth for an extensive range of parameters. The corresponding neural networks are trained on GALPROP (ascl:1010.028) simulations. DarkRayNet can also simulate the cosmic ray fluxes for antideuterons; the spectra can be predicted for a signal from dark matter annihilation DM Antideuterons and for secondary emission Secondary Antideuterons.