ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Larson, Kirsten'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2105.020] PAP: PHANGS-ALMA pipeline

The PHANGS-ALMA pipeline process data from radio interferometer observations. It uses CASA (ascl:1107.013), AstroPy (ascl:1304.002), and other affiliated packages to process data from calibrated visibilities to science-ready spectral cubes and maps. The PHANGS-ALMA pipeline offers a flexible alternative to the scriptForImaging script distributed by ALMA. The pipeline runs in two separate software environments: CASA 5.6 or 5.7 (staging, imaging and post-processing) and Python 3.6 or later (derived products) with modern versions of several packages.

[submitted] CAFE: The Continuum And Feature Extraction tool

The new Continuum And Feature Extraction (CAFE) is a python version of the original CAFE IDL software, originally developed for fitting Spitzer/IRS spectra– that has been updated and optimized to work with JWST IFU data. CAFE is composed of two main tools: (1) the CAFE Region Extraction Tool Automaton (CRETA) and (2) the CAFE spectral fitting tool, or fitter. CRETA performs single-position and full-grid extractions from JWST IFU datasets; that is, from pipeline-processed cubes obtained with the NIRSpec IFU and MIRI MRS instruments. The CAFE fitter uses the spectra extracted by CRETA (or spectra provided by the user) and performs a spectral decomposition of the continuum emission (stellar and/or dust), as well as of a variety of common spectral features (in emission and absorption) present in the near- and mid-IR spectra of galaxies, including prominent, broad emission from small grains and molecules such as Polycyclic Aromatic Hydrocarbons (PAHs). The full dust treatment (size and composition) performed by CAFE (see Marshall et al. 2007) allows the dust continuum model components to fit not only spectra from typical star-forming galaxies, but also those from more extreme, heavily dust-obscured starburst galaxies, such as luminous infrared galaxies (LIRGs and ULIRGs), active galactic nuclei (AGN), or very luminous quasars.