ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Li, Dan'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1411.009] iDealCam: Interactive Data Reduction and Analysis for CanariCam

iDealCam is an IDL GUI toolkit for processing multi-extension FITS file produced by CanariCam, the facility mid-IR instrument of Gran Telescopio CANARIAS (GTC). iDealCam is optimized for CanariCam data, but is also compatible with data generated by other instruments using similar detectors and data format (e.g., Michelle and T-ReCS at Gemini). iDealCam provides essential capabilities to examine, reduce, and analyze data obtained in the standard imaging or polarimetric imaging mode of CanariCam.

[ascl:1806.013] SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[submitted] DM phase: A novel algorithm for correcting dispersion of radio signals

Radio waves propagating in space are subject to frequency-dependent delay due to interactions with cold free electrons, which gives coherent radio emissions a unique structure known as dispersion. The study of impulsive radio signals from astronomical sources, such as those emitted by pulsars and fast radio bursts (FRBs), requires proper corrections for this effect. Moreover, the ionized medium itself can be characterized by sensitive measurements of this dispersion.
Signal dispersion is proportional to the integrated column density of free electrons along the line of sight, a quantity known as dispersion measure (DM), and inversely proportional to the observing frequency squared. Traditional methods search for the best DM value of a source by maximizing the signal-to-noise ratio (S/N) of the detected signal. While sensitive and efficient algorithms have been designed for this purpose, they are affected by two limitations. Firstly, they implicitly assume a broadband emission across the entire observing frequency bandwidth. While this is normally true for pulsars, some FRBs have been observed to have complex spectra which returned incorrect DM values. Secondly, these traditional algorithms are highly sensitive to large-amplitude events such as large noise spikes and radio interference. In order to overcome these limitations, we developed a new algorithm to maximize the coherent power of the signal instead of its intensity. Since the structure of the signal is coherent at different frequencies, this method is relatively insensitive to complex spectro-temporal shapes of the pulses. In addition, this method is more robust to noise and interference because these normally have incoherent structures and the amplitude information in each frequency channel is discarded.