ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'M.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:9906.002] EXTINCT: A computerized model of large-scale visual interstellar extinction

The program EXTINCT.FOR is a FORTRAN subroutine summarizing a three-dimensional visual Galactic extinction model, based on a number of published studies. INPUTS: Galactic latitude (degrees), Galactic longitude (degrees), and source distance (kpc). OUTPUTS (magnitudes): Extinction, extinction error, a statistical correction term, and an array containing extinction and extinction error from each subroutine. The model is useful for correcting visual magnitudes of Galactic sources (particularly in statistical models), and has been used to find Galactic extinction of extragalactic sources. The model's limited angular resolution (subroutine-dependent, but with a minimum resolution of roughly 2 degrees) is necessitated by its ability to describe three-dimensional structure.

[ascl:9909.004] CMBFAST: A microwave anisotropy code

CMBFAST is the most extensively used code for computing cosmic microwave background anisotropy, polarization and matter power spectra. This package contains cosmological linear perturbation theory code to compute the evolution of various cosmological matter and radiation components, both today and at high redshift. The code has been tested over a wide range of cosmological parameters.

This code is no longer supported; please investigate using CAMB (ascl:1102.026) instead.

[ascl:9912.001] SPH_1D: Hierarchical gravity/SPH treecode for simulations of interacting galaxies

We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

[ascl:0011.001] StarFinder: A code for stellar field analysis

StarFinder is an IDL code for the deep analysis of stellar fields, designed for Adaptive Optics well-sampled images with high and low Strehl ratio. The Point Spread Function is extracted directly from the frame, to take into account the actual structure of the instrumental response and the atmospheric effects. The code is written in IDL language and organized in the form of a self-contained widget-based application, provided with a series of tools for data visualization and analysis. A description of the method and some applications to Adaptive Optics data are presented.

[ascl:0202.001] PopRatio: A program to calculate atomic level populations in astrophysical plasmas

PopRatio is a Fortran 90 code to calculate atomic level populations in astrophysical plasmas. The program solves the equations of statistical equilibrium considering all possible bound-bound processes: spontaneous, collisional or radiation induced (the later either directly or by fluorescence). There is no limit on the number of levels or in the number of processes that may be taken into account. The program may find a wide range of applicability in astronomical problems, such as interpreting fine-structure absorption lines or collisionally excited emission lines and also in calculating the cooling rates due to collisional excitation.

[ascl:1007.005] Arcetri Spectral Code for Thin Plasmas

The Arcetri spectral code allows to evaluate the spectrum of the radiation emitted by hot and optically thin plasmas in the spectral range 1 - 2000 Angstroms. The database has been updated including atomic data and radiative and collisional rates to calculate level population and line emissivities for a number of ions of the minor elements; a critical compilation of the electron collision excitation for these elements has been performed. The present version of the program includes the CHIANTI database for the most abundant elements, the minor elements data, and Fe III atomic model, radiative and collisional data.

[ascl:1010.004] Needatool: A Needlet Analysis Tool for Cosmological Data Processing

NeedATool (Needlet Analysis Tool) performs data analysis based on needlets, a wavelet rendition powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, particularly to the analysis of cosmic microwave background (CMB) data. Wavelets have emerged as a useful tool for CMB data analysis, as they combine most of the advantages of both pixel space, where it is easier to deal with partial sky coverage and experimental noise, and the harmonic domain, in which beam treatment and comparison with theoretical predictions are more effective due in large part to their sharp localization.

[ascl:1010.006] DSPSR: Digital Signal Processing Software for Pulsar Astronomy

DSPSR, written primarily in C++, is an open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. The library implements an extensive range of modular algorithms for use in coherent dedispersion, filterbank formation, pulse folding, and other tasks. The software is installed and compiled using the standard GNU configure and make system, and is able to read astronomical data in 18 different file formats, including FITS, S2, CPSR, CPSR2, PuMa, PuMa2, WAPP, ASP, and Mark5.

[ascl:1010.007] JAVELIN: Just Another Vehicle for Estimating Lags In Nuclei

JAVELIN (formerly known as SPEAR) is an approach to reverberation mapping that computes the lags between the AGN continuum and emission line light curves and their statistical confidence limits. It uses a damped random walk model to describe the quasar continuum variability and the ansatz that emission line variability is a scaled, smoothed and displaced version of the continuum. While currently configured only to simultaneously fit light curve means, it includes a general linear parameters formalism to fit more complex trends or calibration offsets. The noise matrix can be modified to allow for correlated errors, and the correlation matrix can be modified to use a different stochastic process. The transfer function model is presently a tophat, but this can be altered by changing the line-continuum covariance matrices. It is also able to cope with some problems in traditional reverberation mapping, such as irregular sampling, correlated errors and seasonal gaps.

[ascl:1010.014] Athena: Grid-based code for astrophysical magnetohydrodynamics (MHD)

Athena is a grid-based code for astrophysical magnetohydrodynamics (MHD). It was developed primarily for studies of the interstellar medium, star formation, and accretion flows. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.

[ascl:1010.037] FastChi: A Fast Chi-squared Technique For Period Search of Irregularly Sampled Data

The Fast Chi-Squared Algorithm is a fast, powerful technique for detecting periodicity. It was developed for analyzing variable stars, but is applicable to many of the other applications where the Fast Fourier Transforms (FFTs) or other periodograms (such as Lomb-Scargle) are currently used. The Fast Chi-squared technique takes a data set (e.g. the brightness of a star measured at many different times during a series of observations) and finds the periodic function that has the best frequency and shape (to an arbitrary number of harmonics) to fit the data. Among its advantages are:

  • Statistical efficiency: all of the data are used, weighted by their individual error bars, giving a result with a significance calibrated in well-understood Chi-squared statistics.
  • Sensitivity to harmonic content: many conventional techniques look only at the significance (or the amplitude) of the fundamental sinusoid and discard the power of the higher harmonics.
  • Insensitivity to the sample timing: you won't find a period of 24 hours just because you take your observations at night. You do not need to window your data.
  • The frequency search is gridded more tightly than the traditional "integer number of cycles over the span of observations", eliminating power loss from peaks that fall between the grid points.
  • Computational speed: The complexity of the algorithm is O(NlogN), where N is the number of frequencies searched, due to its use of the FFT.

[ascl:1010.038] Low Resolution Spectral Templates For AGNs and Galaxies From 0.03 -- 30 microns

We present a set of low resolution empirical SED templates for AGNs and galaxies in the wavelength range from 0.03 to 30 microns based on the multi-wavelength photometric observations of the NOAO Deep-Wide Field Survey Bootes field and the spectroscopic observations of the AGN and Galaxy Evolution Survey. Our training sample is comprised of 14448 galaxies in the redshift range 0<~z<~1 and 5347 likely AGNs in the range 0<~z<~5.58. We use our templates to determine photometric redshifts for galaxies and AGNs. While they are relatively accurate for galaxies, their accuracies for AGNs are a strong function of the luminosity ratio between the AGN and galaxy components. Somewhat surprisingly, the relative luminosities of the AGN and its host are well determined even when the photometric redshift is significantly in error. We also use our templates to study the mid-IR AGN selection criteria developed by Stern et al.(2005) and Lacy et al.(2004). We find that the Stern et al.(2005) criteria suffers from significant incompleteness when there is a strong host galaxy component and at z =~ 4.5, when the broad Halpha emission line is redshifted into the [3.6] band, but that it is little contaminated by low and intermediate redshift galaxies. The Lacy et al.(2004) criterion is not affected by incompleteness at z =~ 4.5 and is somewhat less affected by strong galaxy host components, but is heavily contaminated by low redshift star forming galaxies. Finally, we use our templates to predict the color-color distribution of sources in the upcoming WISE mission and define a color criterion to select AGNs analogous to those developed for IRAC photometry. We estimate that in between 640,000 and 1,700,000 AGNs will be identified by these criteria, but will have serious completeness problems for z >~ 3.4.

[ascl:1010.044] MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows

MAESTRO, a low Mach number stellar hydrodynamics code, simulates long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows, and adaptive mesh refinement (AMR) has been incorporated into the code. The expansion of the base state for full-star flows using a novel mapping technique between the one-dimensional base state and the Cartesian grid is also available.

NOTE: MAESTRO is no longer being actively developed. Users should switch to MAESTROeX (ascl:1908.019) to take advantage of the latest capabilities.

[ascl:1010.047] ISW and Weak Lensing Likelihood Code

ISW and Weak Lensing Likelihood code is the likelihood code that calculates the likelihood of Integrated Sachs Wolfe and Weak Lensing of Cosmic Microwave Background using the WMAP 3year CMB maps with mass tracers such as 2MASS (2-Micron All Sky Survey), SDSS LRG (Sloan Digital Sky Survey Luminous Red Galaxies), SDSS QSOs (Sloan Digital Sky Survey Quasars) and NVSS (NRAO VLA All Sky Survey) radio sources. The details of the analysis (*thus the likelihood code) can be understood by reading the papers ISW paper and Weak lensing paper. The code does brute force theoretical matter power spectrum and calculations with CAMB. See the paper for an introduction, descriptions, and typical results from some pre-WMAP data. The code is designed to be integrated into CosmoMC. For further information concerning the integration, see Code Modification for integration into COSMOMC.

[ascl:1010.053] Halofitting codes for DGP and Degravitation

We perform N-body simulations of theories with infinite-volume extra dimensions, such as the Dvali-Gabadadze-Porrati (DGP) model and its higher-dimensional generalizations, where 4D gravity is mediated by massive gravitons. The longitudinal mode of these gravitons mediates an extra scalar force, which we model as a density-dependent modification to the Poisson equation. This enhances gravitational clustering, particularly on scales that have undergone mild nonlinear processing. While the standard non-linear fitting algorithm of Smith et al. overestimates this power enhancement on non-linear scales, we present a modified fitting formula that offers a remarkably good fit to our power spectra. Due to the uncertainty in galaxy bias, our results are consistent with precision power spectrum determinations from galaxy redshift surveys, even for graviton Compton wavelengths as small as 300 Mpc. Our model is sufficiently general that we expect it to capture the phenomenology of a wide class of related higher-dimensional gravity scenarios.

[ascl:1010.058] VINE: A numerical code for simulating astrophysical systems using particles

VINE is a particle based astrophysical simulation code. It uses a tree structure to efficiently solve the gravitational N-body problem and Smoothed Particle Hydrodynamics (SPH) to simulate gas dynamical effects. The code has been successfully used for a number of studies on galaxy interactions, galactic dynamics, star formation and planet formation and given the implemented physics, other applications are possible as well.

[ascl:1010.081] MGGPOD: A Monte Carlo Suite for Gamma-Ray Astronomy

We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package. The MGGPOD Monte Carlo suite and documentation are publicly available for download. MGGPOD is an ideal tool for supporting the various stages of gamma-ray astronomy missions, ranging from the design, development, and performance prediction through calibration and response generation to data reduction. In particular, MGGPOD is capable of simulating ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds.

[ascl:1010.082] FLASH: Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes

The FLASH code, currently in its 4th version, is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other. A simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework combined with regression tests that run nightly on multiple platforms verify the code.

[ascl:1011.004] MARS: The MAGIC Analysis and Reconstruction Software

With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected atmospheric showers. MARS is a ROOT-based code written in C++, which includes all the necessary algorithms to transform the raw data recorded by the telescopes into information about the physics parameters of the observed targets. An overview of the methods for extracting the basic shower parameters is presented, together with a description of the tools used in the background discrimination and in the estimation of the gamma-ray source spectra.

[ascl:1011.010] Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available in the archive file at the link below.

[ascl:1011.019] FLY: MPI-2 High Resolution code for LSS Cosmological Simulations

Cosmological simulations of structures and galaxies formations have played a fundamental role in the study of the origin, formation and evolution of the Universe. These studies improved enormously with the use of supercomputers and parallel systems and, recently, grid based systems and Linux clusters. Now we present the new version of the tree N-body parallel code FLY that runs on a PC Linux Cluster using the one side communication paradigm MPI-2 and we show the performances obtained. FLY is included in the Computer Physics Communication Program Library. This new version was developed using the Linux Cluster of CINECA, an IBM Cluster with 1024 Intel Xeon Pentium IV 3.0 Ghz. The results show that it is possible to run a 64 Million particle simulation in less than 15 minutes for each timestep, and the code scalability with the number of processors is achieved. This lead us to propose FLY as a code to run very large N-Body simulations with more than $10^{9}$ particles with the higher resolution of a pure tree code.

[ascl:1011.020] VisIVO: Integrated Tools and Services for Large-Scale Astrophysical Visualization

VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments.

[ascl:1011.023] HyRec: A Fast and Highly Accurate Primordial Hydrogen and Helium Recombination Code

We present a state-of-the-art primordial recombination code, HyRec, including all the physical effects that have been shown to significantly affect recombination. The computation of helium recombination includes simple analytic treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He I] 2 3P - 1 1S line, and treats feedback between these lines within the on-the-spot approximation. Hydrogen recombination is computed using the effective multilevel atom method, virtually accounting for an infinite number of excited states. We account for two-photon transitions from 2s and higher levels as well as frequency diffusion in Lyman-alpha with a full radiative transfer calculation. We present a new method to evolve the radiation field simultaneously with the level populations and the free electron fraction. These computations are sped up by taking advantage of the particular sparseness pattern of the equations describing the radiative transfer. The computation time for a full recombination history is ~2 seconds. This makes our code well suited for inclusion in Monte Carlo Markov chains for cosmological parameter estimation from upcoming high-precision cosmic microwave background anisotropy measurements.

[ascl:1101.005] CMHOG: Code for Ideal Compressible Hydrodynamics

CMHOG (Connection Machine Higher Order Godunov) is a code for ideal compressible hydrodynamics based on the Lagrange-plus-remap version of the piecewise parabolic method (PPM) of Colella & Woodward (1984, J. Comp. Phys., 74, 1). It works in one-, two- or three-dimensional Cartesian coordinates with either an adiabatic or isothermal equation of state. A limited amount of extra physics has been added using operator splitting, including optically-thin radiative cooling, and chemistry for combustion simulations.

[ascl:1101.008] CRASH: A Block-Adaptive-Mesh Code for Radiative Shock Hydrodynamics

CRASH (Center for Radiative Shock Hydrodynamics) is a block adaptive mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with the gray or multigroup method and uses a flux limited diffusion approximation to recover the free-streaming limit. The electrons and ions are allowed to have different temperatures and we include a flux limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite volume discretization in either one, two, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator split method is used to solve these equations in three substeps: (1) solve the hydrodynamic equations with shock-capturing schemes, (2) a linear advection of the radiation in frequency-logarithm space, and (3) an implicit solve of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with this new radiation transfer and heat conduction library and equation-of-state and multigroup opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework (SWMF).

[ascl:1102.002] PBL: Particle-Based Lensing for Gravitational Lensing Mass Reconstructions of Galaxy Clusters

We present Particle-Based Lensing (PBL), a new technique for gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multi-scale analysis in smoothed particle hydrodynamics. In PBL, we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce constant signal-noise throughout, and maximally exploit regions of high information density.

PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction, and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied ``Bullet Cluster'' (1E0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong lensing measurements.

[ascl:1104.003] Starburst99: Synthesis Models for Galaxies with Active Star Formation

Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 10^6 to 10^9 yr. Spectral energy distributions are used to compute colors and other quantities.

[ascl:1104.004] MASSCLEAN: MASSive CLuster Evolution and ANalysis Package

MASSCLEAN is a sophisticated and robust stellar cluster image and photometry simulation package. This package is able to create color-magnitude diagrams and standard FITS images in any of the traditional optical and near-infrared bands based on cluster characteristics input by the user, including but not limited to distance, age, mass, radius and extinction. At the limit of very distant, unresolved clusters, we have checked the integrated colors created in MASSCLEAN against those from other simple stellar population (SSP) models with consistent results. Because the algorithm populates the cluster with a discrete number of tenable stars, it can be used as part of a Monte Carlo Method to derive the probabilistic range of characteristics (integrated colors, for example) consistent with a given cluster mass and age.

[ascl:1105.006] SPARC: Seismic Propagation through Active Regions and Convection

The Seismic Propagation through Active Regions and Convection (SPARC) code was developed by S. Hanasoge. The acoustic wavefield in SPARC is simulated by numerically solving the linearised 3-D Euler equations in Cartesian geometry (e.g., see Hanasoge, Duvall and Couvidat (2007)). Spatial derivatives are calculated using sixth-order compact finite differences (Lele,1992) and time evolution is achieved through the repeated application of an optimized second-order five-stage Runge-Kutta scheme (Hu, 1996). Periodic horizontal boundaries are used.

[ascl:1105.010] CASTRO: Multi-dimensional Eulerian AMR Radiation-hydrodynamics Code

CASTRO is a multi-dimensional Eulerian AMR radiation-hydrodynamics code that includes stellar equations of state, nuclear reaction networks, and self-gravity. Initial target applications for CASTRO include Type Ia and Type II supernovae. CASTRO supports calculations in 1-d, 2-d and 3-d Cartesian coordinates, as well as 1-d spherical and 2-d cylindrical (r-z) coordinate systems. Time integration of the hydrodynamics equations is based on an unsplit version of the piecewise parabolic method (PPM) with new limiters that avoid reducing the accuracy of the scheme at smooth extrema. CASTRO can follow an arbitrary number of isotopes or elements. The atomic weights and amounts of these elements are used to calculate the mean molecular weight of the gas required by the equation of state. CASTRO supports several different approaches to solving for self-gravity. The most general is a full Poisson solve for the gravitational potential. CASTRO also supports a monopole approximation for gravity, and a constant gravity option is also available. The CASTRO software is written in C++ and Fortran, and is based on the BoxLib software framework developed by CCSE.

[ascl:1106.003] PLplot: Cross-platform Software Package for Scientific Plots

PLplot is a cross-platform software package for creating scientific plots. To help accomplish that task it is organized as a core C library, language bindings for that library, and device drivers which control how the plots are presented in non-interactive and interactive plotting contexts. The PLplot core library can be used to create standard x-y plots, semi-log plots, log-log plots, contour plots, 3D surface plots, mesh plots, bar charts and pie charts. Multiple graphs (of the same or different sizes) may be placed on a single page, and multiple pages are allowed for those device formats that support them. PLplot has core support for Unicode. This means for our many Unicode-aware devices that plots can be labelled using the enormous selection of Unicode mathematical symbols. A large subset of our Unicode-aware devices also support complex text layout (CTL) languages such as Arabic, Hebrew, and Indic and Indic-derived CTL scripts such as Devanagari, Thai, Lao, and Tibetan. PLplot device drivers support a number of different file formats for non-interactive plotting and a number of different platforms that are suitable for interactive plotting. It is easy to add new device drivers to PLplot by writing a small number of device dependent routines.

[ascl:1106.009] PARAMESH V4.1: Parallel Adaptive Mesh Refinement

PARAMESH is a package of Fortran 90 subroutines designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity.

The package builds a hierarchy of sub-grids to cover the computational domain, with spatial resolution varying to satisfy the demands of the application. These sub-grid blocks form the nodes of a tree data-structure (quad-tree in 2D or oct-tree in 3D). Each grid block has a logically cartesian mesh. The package supports 1, 2 and 3D models. PARAMESH is released under the NASA-wide Open-Source software license.

[ascl:1106.017] CAOS: Code for Adaptive Optics Systems

The CAOS "system" (where CAOS stands for Code for Adaptive Optics Systems) is properly said a Problem Solving Environment (PSE). It is essentially composed of a graphical programming interface (the CAOS Application Builder) which can load different packages (set of modules). Current publicly distributed packages are the Software Package CAOS (the original adaptive optics package), the Software Package AIRY (an image-reconstruction-oriented package - AIRY stands for Astronomical Image Restoration with interferometrY), the Software Package PAOLAC (a simple CAOS interface for the analytic IDL code PAOLA developed by Laurent Jolissaint - PAOLAC stands for PAOLA within Caos), and a couple of private packages (not publicly distributed but restricted to the corresponding consortia): SPHERE (especially developed for the VLT planet finder SPHERE), and AIRY-LN (a specialized version of AIRY for the LBT instrument LINC-NIRVANA). Another package is also being developed: MAOS (that stands for Multiconjugate Adaptive Optics Simulations), developed for multi-reference multiconjugate AO studies purpose but still in a beta-version form.

[ascl:1106.024] ELMAG: Simulation of Electromagnetic Cascades

A Monte Carlo program for the simulation of electromagnetic cascades initiated by high-energy photons and electrons interacting with extragalactic background light (EBL) is presented. Pair production and inverse Compton scattering on EBL photons as well as synchrotron losses and deflections of the charged component in extragalactic magnetic fields (EGMF) are included in the simulation. Weighted sampling of the cascade development is applied to reduce the number of secondary particles and to speed up computations. As final result, the simulation procedure provides the energy, the observation angle, and the time delay of secondary cascade particles at the present epoch. Possible applications are the study of TeV blazars and the influence of the EGMF on their spectra or the calculation of the contribution from ultrahigh energy cosmic rays or dark matter to the diffuse extragalactic gamma-ray background. As an illustration, we present results for deflections and time-delays relevant for the derivation of limits on the EGMF.

[ascl:1107.012] LIME: Flexible, Non-LTE Line Excitation and Radiation Transfer Method for Millimeter and Far-infrared Wavelengths

LIME solves the molecular and atomic excitation and radiation transfer problem in a molecular gas and predicting emergent spectra. The code works in arbitrary three dimensional geometry using unstructured Delaunay latices for the transport of photons. Various physical models can be used as input, ranging from analytical descriptions over tabulated models to SPH simulations. To generate the Delaunay grid we sample the input model randomly, but weigh the sample probability with the molecular density and other parameters, and thereby we obtain an average grid point separation that scales with the local opacity. Slow convergence of opaque models becomes traceable; when convergence between the level populations, the radiation field, and the point separation has been obtained, the grid is ray-traced to produced images that can readily be compared to observations. LIME is particularly well suited for modeling of ALMA data because of the high dynamic range in scales that can be resolved using this type of grid, and can furthermore deal with overlapping lines of multiple molecular and atomic species.

[ascl:1107.018] HEALPix: Hierarchical Equal Area isoLatitude Pixelization of a sphere

HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere. As suggested in the name, this pixelization produces a subdivision of a spherical surface in which each pixel covers the same surface area as every other pixel. Another property of the HEALPix grid is that the pixel centers occur on a discrete number of rings of constant latitude, the number of constant-latitude rings is dependent on the resolution of the HEALPix grid.

[ascl:1108.002] SHERA: SHEar Reconvolution Analysis

Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). The SHERA (SHEar Reconvolution Analysis) software simulates ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak lensing galaxy shape measurements or galaxy radial profiles, given user-supplied observational conditions and real galaxy morphologies. Moreover, the simulations allow for the empirical test of error estimates and determination of parameter degeneracies, via generation of many noise maps. The public release of this software, along with a large sample of cleaned COSMOS galaxy images (corrected for charge transfer inefficiency), should enable upcoming ground-based imaging surveys to achieve their potential in the areas of precision weak lensing analysis, galaxy profile measurement, and other applications involving detailed image analysis.

This code is no longer maintained and has been superseded by GalSim (ascl:1402.009).

[ascl:1108.003] WCSLIB and PGSBOX

WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System" (WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX, for drawing general curvilinear coordinate graticules and a number of utility programs.

[ascl:1108.006] STARLIGHT: Spectral Synthesis Code

The study of stellar populations in galaxies is entering a new era with the availability of large and high quality databases of both observed galactic spectra and state-of-the-art evolutionary synthesis models. The power of spectral synthesis can be investigated as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities, producing astrophysically interesting output such as the star-formation and chemical enrichment histories of a galaxy, its extinction and velocity dispersion. This is what the STARLIGHT spectral synthesis code does.

[ascl:1109.006] MultiNest: Efficient and Robust Bayesian Inference

We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla $Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC (ascl:1106.025). It will also be released as part of the SuperBayeS package (ascl:1109.007) for the analysis of supersymmetric theories of particle physics.

[ascl:1109.018] GIPSY: Groningen Image Processing System

GIPSY is an acronym of Groningen Image Processing SYstem. It is a highly interactive software system for the reduction and display of astronomical data. It supports multi-tasking using a versatile user interface, it has an advanced data structure, a powerful script language and good display facilities based on the X Window system.

GIPSY consists of a number of components which can be divided into a number of classes: 1.) The user interfaces. Currently two user interfaces are available; one for interactive work and one for batch processing. 2.) The data structure. 3.) The display utilities. 4.) The application programs. These are the majority of programs.

GIPSY was designed originally for the reduction of interferometric data from the Westerbork Synthesis Radio Telescope, but in its history of more than 20 years it has grown to a system capable of handling data from many different instruments (e.g. TAURUS, IRAS etc.).

[ascl:1110.005] ZEBRA: Zurich Extragalactic Bayesian Redshift Analyzer

The current version of the Zurich Extragalactic Bayesian Redshift Analyzer (ZEBRA) combines and extends several of the classical approaches to produce accurate photometric redshifts down to faint magnitudes. In particular, ZEBRA uses the template-fitting approach to produce Maximum Likelihood and Bayesian redshift estimates based on: (1.) An automatic iterative technique to correct the original set of galaxy templates to best represent the SEDs of real galaxies at different redshifts; (2.) A training set of spectroscopic redshifts for a small fraction of the photometric sample; and (3.) An iterative technique for Bayesian redshift estimates, which extracts the full two-dimensional redshift and template probability function for each galaxy.

[ascl:1110.014] pureS2HAT: S 2HAT-based Pure E/B Harmonic Transforms

The pS2HAT routines allow efficient, parallel calculation of the so-called 'pure' polarized multipoles. The computed multipole coefficients are equal to the standard pseudo-multipoles calculated for the apodized sky maps of the Stokes parameters Q and U subsequently corrected by so-called counterterms. If the applied apodizations fullfill certain boundary conditions, these multipoles correspond to the pure multipoles. Pure multipoles of one type, i.e., either E or B, are ensured not to contain contributions from the other one, at least to within numerical artifacts. They can be therefore further used in the estimation of the sky power spectra via the pseudo power spectrum technique, which has to however correctly account for the applied apodization on the one hand, and the presence of the counterterms, on the other.

In addition, the package contains the routines permitting calculation of the spin-weighted apodizations, given an input scalar, i.e., spin-0 window. The former are needed to compute the counterterms. It also provides routines for maps and window manipulations. The routines are written in C and based on the S2HAT library, which is used to perform all required spherical harmonic transforms as well as all inter-processor communication. They are therefore parallelized using MPI and follow the distributed-memory computational model. The data distribution patterns, pixelization choices, conventions etc are all as those assumed/allowed by the S2HAT library.

[ascl:1110.018] MADmap: Fast Parallel Maximum Likelihood CMB Map Making Code

MADmap produces maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap has the ability to address problems typically encountered in the analysis of realistic CMB data sets. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analyzing the largest data sets now being collected on computing resources currently available.

[ascl:1110.021] Univiewer: Visualisation Program for HEALPix Maps

Univiewer is a visualisation program for HEALPix maps. It is written in C++ and uses OpenGL and the wxWidgets library for cross-platform portability. Using it you can:

- Rotate and zoom maps on the sphere in 3D
- Create high-resolution views of square patches of the map
- Change maximum and minimum values of the colourmap interactively
- Calculate the power spectrum of the full-sky map or a patch
- Display any column of a HEALPix map FITS file on the sphere

Since Univiewer uses OpenGL for 3D graphics, its performance is dependent your video card. It has been tested successfully on computers with as little as 8Mb video memory, but it is recommended to have at least 32Mb to get good performance.

In the 3D view, a HEALPix map is projected onto a ECP pixelation to create a texture which is wrapped around the sphere. In calculating the power spectrum, the spherical harmonic transforms are computed using the same ECP pixelation. This inevitably leads to some discrepancies at small scales due to repixelation effects, but they are reasonably small.

[ascl:1111.009] MESS: Multi-purpose Exoplanet Simulation System

MESS is a Monte Carlo simulation IDL code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. It can be used to probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planets. A Python version of this code, Exo-DMC (ascl:2010.008), is available.

[ascl:1111.013] FIBRE-pac: FMOS Image-based Reduction Package

The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.

[ascl:1112.006] PhAst: Display and Analysis of FITS Images

PhAst (Photometry-Astrometry) is an IDL astronomical image viewer based on the existing application ATV which displays and analyzes FITS images. It can calibrate raw images, provide astrometric solutions, and do circular aperture photometry. PhAst allows the user to load, process, and blink any number of images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting.

[ascl:1201.005] 2LPTIC: 2nd-order Lagrangian Perturbation Theory Initial Conditions

Setting initial conditions in numerical simulations using the standard procedure based on the Zel'dovich approximation (ZA) generates incorrect second and higher-order growth and therefore excites long-lived transients in the evolution of the statistical properties of density and velocity fields. Using more accurate initial conditions based on second-order Lagrangian perturbation theory (2LPT) reduces transients significantly; initial conditions based on 2LPT are thus much more appropriate for numerical simulations devoted to precision cosmology. The 2LPTIC code provides initial conditions for running cosmological simulations based on second-order Lagrangian Perturbation Theory (2LPT), rather than first-order (Zel'dovich approximation).

[ascl:1201.014] Hammurabi: Simulating polarized Galactic synchrotron emission

The Hammurabi code is a publicly available C++ code for generating mock polarized observations of Galactic synchrotron emission with telescopes such as LOFAR, SKA, Planck, and WMAP, based on model inputs for the Galactic magnetic field (GMF), the cosmic-ray density distribution, and the thermal electron density. The Hammurabi code allows one to perform simulations of several different data sets simultaneously, providing a more reliable constraint of the magnetized ISM.

[ascl:1202.001] CISM_DX: Visualization and analysis tool

CISM_DX is a community-developed suite of integrated data, models, and data and model explorers, for research and education. The data and model explorers are based on code written for OpenDX and Octave; OpenDX provides the visualization infrastructures as well as the process for creating user interfaces to the model and data, and Octave allows for extensive data manipulation and reduction operations. The CISM-DX package extends the capabilities of the core software programs to meet the needs of space physics researchers.

[ascl:1202.011] Lattimer-Swesty Equation of State Code

The Lattimer-Swesty Equation of State code is rapid enough to use directly in hydrodynamical simulations such as stellar collapse calculations. It contains an adjustable nuclear force that accurately models both potential and mean-field interactions and allows for the input of various nuclear parameters, including the bulk incompressibility parameter, the bulk and surface symmetry energies, the symmetric matter surface tension, and the nucleon effective masses. This permits parametric studies of the equation of state in astrophysical situations. The equation of state is modeled after the Lattimer, Lamb, Pethick, and Ravenhall (LLPR) compressible liquid drop model for nuclei, and includes the effects of interactions and degeneracy of the nucleon outside nuclei.

[ascl:1202.015] RADMC-3D: A multi-purpose radiative transfer tool

RADMC-3D is a software package for astrophysical radiative transfer calculations in arbitrary 1-D, 2-D or 3-D geometries. It is mainly written for continuum radiative transfer in dusty media, but also includes modules for gas line transfer and gas continuum transfer. RADMC-3D is a new incarnation of the older software package RADMC (ascl:1108.016).

[ascl:1205.002] p3d: General data-reduction tool for fiber-fed integral-field spectrographs

p3d is semi-automatic data-reduction tool designed to be used with fiber-fed integral-field spectrographs. p3d is a highly general and freely available tool based on IDL but can be used with full functionality without an IDL license. It is easily extended to include improved algorithms, new visualization tools, and support for additional instruments. It uses a novel algorithm for automatic finding and tracing of spectra on the detector, and includes two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data.

[ascl:1205.006] Flexion: IDL code for calculating gravitational flexion

Gravitational flexion is a technique for measuring 2nd order gravitational lensing signals in background galaxies and radio lobes. Unlike shear, flexion directly probes variations of the potential field. Moreover, the information contained in flexion is orthogonal to what is found in the shear. Thus, we get the information "for free."

[ascl:1206.004] MOLSCAT: MOLecular SCATtering v. 14

MOLSCAT version 14 is a FORTRAN code for quantum mechanical (coupled channel) solution of the nonreactive molecular scattering problem and was developed to obtain collision rates for molecules in the interstellar gas which are needed to understand microwave and infrared astronomical observations. The code is implemented for various types of collision partners. In addition to the essentially exact close coupling method several approximate methods, including the Coupled States and Infinite Order Sudden approximations, are provided. This version of the code has been superseded by MOLSCAT 2020 (ascl:2010.001).

[ascl:1207.002] HiGPUs: Hermite's N-body integrator running on Graphic Processing Units

HiGPUs is an implementation of the numerical integration of the classical, gravitational, N-body problem, based on a 6th order Hermite’s integration scheme with block time steps, with a direct evaluation of the particle-particle forces. The main innovation of this code is its full parallelization, exploiting both OpenMP and MPI in the use of the multicore Central Processing Units as well as either Compute Unified Device Architecture (CUDA) or OpenCL for the hosted Graphic Processing Units. We tested both performance and accuracy of the code using up to 256 GPUs in the supercomputer IBM iDataPlex DX360M3 Linux Infiniband Cluster provided by the italian supercomputing consortium CINECA, for values of N ≤ 8 millions. We were able to follow the evolution of a system of 8 million bodies for few crossing times, task previously unreached by direct summation codes.

HiGPUs is also available as part of the AMUSE project.

[ascl:1207.008] xSonify: Sonification software

xSonify maps scientific data to acoustic sequences. Listening to data can help discover patterns in huge amounts of data. Written in Java, xSonify allows visually impaired people to examine numerical data for patterns. The data can be imported from local files or from remote databases via the Internet. Single results of measurements from spacecraft instruments can be selected by their corresponding variables in a specific time frame. The results are transformed into MIDI sequences which can be played with a selection of different instruments from a soundbank. Another software module enables xSonify to convert the sonified data into other sound formats to make it easier to archive and exchange the Sonification results with other scientists.

[ascl:1207.009] PyFITS: Python FITS Module

PyFITS provides an interface to FITS formatted files in the Python scripting language and PyRAF, the Python-based interface to IRAF. It is useful both for interactive data analysis and for writing analysis scripts in Python using FITS files as either input or output. PyFITS is a development project of the Science Software Branch at the Space Telescope Science Institute.

PyFITS has been deprecated. Please see Astropy.

[ascl:1207.010] PySALT: SALT science pipeline

The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.

[ascl:1208.006] ccogs: Cosmological Calculations on the GPU

This suite contains two packages for computing cosmological quantities on the GPU: aperture_mass, which calculates the aperture mass map for a given dataset using the filter proposed by Schirmer et al (2007) (an NFW profile with exponential cut-offs at zero and large radii), and angular_correlation, which calculates the 2-pt angular correlation function using data and a flat distribution of randomly generated galaxies. A particular estimator is chosen, but the user has the flexibility to explore other estimators.

[ascl:1208.007] Big MACS: Accurate photometric calibration

Big MACS is a Python program that estimates an accurate photometric calibration from only an input catalog of stellar magnitudes and filter transmission functions. The user does not have to measure color terms which can be difficult to characterize. Supplied with filter transmission functions, Big MACS synthesizes an expected stellar locus for your data and then simultaneously solves for all unknown zeropoints when fitting to the instrumental locus. The code uses a spectroscopic model for the SDSS stellar locus in color-color space and filter functions to compute expected locus. The stellar locus model is corrected for Milky Way reddening. If SDSS or 2MASS photometry is available for stars in field, Big MACS can yield a highly accurate absolute calibration.

[ascl:1208.009] BLOBCAT: Software to Catalog Blobs

BLOBCAT is a source extraction software that utilizes the flood fill algorithm to detect and catalog blobs, or islands of pixels representing sources, in 2D astronomical images. The software is designed to process radio-wavelength images of both Stokes I intensity and linear polarization, the latter formed through the quadrature sum of Stokes Q and U intensities or as a by-product of rotation measure synthesis. BLOBCAT corrects for two systematic biases to enable the flood fill algorithm to accurately measure flux densities for Gaussian sources. BLOBCAT exhibits accurate measurement performance in total intensity and, in particular, linear polarization, and is particularly suited to the analysis of large survey data.

[ascl:1208.015] Lare3d: Lagrangian-Eulerian remap scheme for MHD

Lare3d is a Lagrangian-remap code for solving the non-linear MHD equations in three spatial dimensions.

[ascl:1209.006] macula: Rotational modulations in the photometry of spotted stars

Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

[ascl:1209.010] MeqTrees: Software package for implementing Measurement Equations

MeqTrees is a software package for implementing Measurement Equations. This makes it uniquely suited for simulation and calibration of radioastronomical data, especially that involving new radiotelescopes and observational regimes. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code.

MeqTrees includes a highly capable FITS viewer and sky model manager called Tigger, which can also work as a standalone tool.

[ascl:1210.007] FLUKA: Fully integrated particle physics Monte Carlo simulation package

FLUKA (FLUktuierende KAskade) is a general-purpose tool for calculations of particle transport and interactions with matter. FLUKA can simulate with high accuracy the interaction and propagation in matter of about 60 different particles, including photons and electrons from 1 keV to thousands of TeV, neutrinos, muons of any energy, hadrons of energies up to 20 TeV (up to 10 PeV by linking FLUKA with the DPMJET code) and all the corresponding antiparticles, neutrons down to thermal energies and heavy ions. The program, written in Fortran, can also transport polarised photons (e.g., synchrotron radiation) and optical photons. Time evolution and tracking of emitted radiation from unstable residual nuclei can be performed online.

[ascl:1210.012] SearchCal: The JMMC Evolutive Search Calibrator Tool

SearchCal builds an evolutive catalog of stars suitable as calibrators within any given user-defined angular distance and magnitude around a scientific target. SearchCal can select suitable bright calibration stars (V ≤ 10; K ≤ 5.0) for obtaining the ultimate precision of current interferometric instruments like the VLTI and faint calibration stars up to K ~ 15 around the scientific target. Star catalogs available at the CDS are searched via web requests and provide the useful astrometric and photometric informations for selecting calibrators. The missing photometries are computed with an accuracy of about 0.1 mag. The stellar angular diameter is estimated with a precision of about 10% through newly determined surface-brightness versus color-index relations based on the I, J, H and K magnitudes. For each star the squared visibility is computed taking into account the central wavelength and the maximum baseline of the predicted observations.

[ascl:1210.014] TRIP: General computer algebra system for celestial mechanics

TRIP is an interactive computer algebra system that is devoted to perturbation series computations, and specially adapted to celestial mechanics. Its development started in 1988, as an upgrade of the special purpose FORTRAN routines elaborated by J. Laskar for the demonstration of the chaotic behavior of the Solar System. TRIP is a mature and efficient tool for handling multivariate generalized power series, and embeds two kernels, a symbolic and a numerical kernel. This numerical kernel communicates with Gnuplot or Grace to plot the graphics and allows one to plot the numerical evaluation of symbolic objects.

[ascl:1212.009] Aegean: Compact source finding in radio images

Aegean, written in python, finds compact sources within radio images by seeking out islands of pixels above a given threshold and then using the curvature of the image to determine how many Gaussian components should be used to describe the island. The Gaussian fitting is initiated with parameters determined from the curvature and intensity maps, and makes use of mpfit to perform a constrained fit. Aegean has been optimized for compact radio sources in images that have no diffuse background emission, but by pre-processing the images with a spatial filter, or by convolving an optical image with an appropriately small PSF, Aegean is able to produce excellent results in a range of applications.

[ascl:1212.012] ddisk: Debris disk time-evolution

ddisk is an IDL script that calculates the time-evolution of a circumstellar debris disk. It calculates dust abundances over time for a debris-disk that is produced by a planetesimal disk that is grinding away due to collisional erosion.

[ascl:1302.006] Minerva: Cylindrical coordinate extension for Athena

Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

[ascl:1302.008] FASTPHOT: A simple and quick IDL PSF-fitting routine

PSF fitting photometry allows a simultaneously fit of a PSF profile on the sources. Many routines use PSF fitting photometry, including IRAF/allstar, Strarfinder, and Convphot. These routines are in general complex to use and slow. FASTPHOT is optimized for prior extraction (the position of the sources is known) and is very fast and simple.

[ascl:1303.009] MAGIX: Modeling and Analysis Generic Interface for eXternal numerical codes

MAGIX provides an interface between existing codes and an iterating engine that minimizes deviations of the model results from available observational data; it constrains the values of the model parameters and provides corresponding error estimates. Many models (and, in principle, not only astrophysical models) can be plugged into MAGIX to explore their parameter space and find the set of parameter values that best fits observational/experimental data. MAGIX complies with the data structures and reduction tools of Atacama Large Millimeter Array (ALMA), but can be used with other astronomical and with non-astronomical data.

[ascl:1303.019] GBTIDL: Reduction and Analysis of GBT Spectral Line Data

GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

[ascl:1303.022] ionFR: Ionospheric Faraday rotation

ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

[ascl:1305.014] TAU: 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

TAU is a 1D line-by-line radiative transfer code for modeling transmission spectra of close-in extrasolar planets. The code calculates the optical path through the planetary atmosphere of the radiation from the host star and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++ and is parallelized using OpenMP.

[ascl:1306.005] PROS: Multi-mission X-ray analysis software system

PROS is a multi-mission x-ray analysis software system designed to run under IRAF. The PROS software includes spatial, spectral, timing, data I/O and conversion routines, plotting applications, and general algorithms for performing arithmetic operations with imaging data.

[ascl:1306.010] MADCOW: Microwave Anisotropy Dataset Computational softWare

MADCOW is a set of parallelized programs written in ANSI C and Fortran 77 that perform a maximum likelihood analysis of visibility data from interferometers observing the cosmic microwave background (CMB) radiation. This software has been used to produce power spectra of the CMB with the Very Small Array (VSA) telescope.

[ascl:1306.014] ZEUS-2D: Simulation of fluid dynamical flows

ZEUS-2D is a hydrodynamics code based on ZEUS which adds a covariant differencing formalism and algorithms for compressible hydrodynamics, MHD, and radiation hydrodynamics (using flux-limited diffusion) in Cartesian, cylindrical, or spherical polar coordinates.

[ascl:1307.001] DustEM: Dust extinction and emission modelling

DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

[ascl:1307.009] MAH: Minimum Atmospheric Height

MAH calculates the posterior distribution of the "minimum atmospheric height" (MAH) of an exoplanet by inputting the joint posterior distribution of the mass and radius. The code collapses the two dimensions of mass and radius into a one dimensional term that most directly speaks to whether the planet has an atmosphere or not. The joint mass-radius posteriors derived from a fit of some exoplanet data (likely using MCMC) can be used by MAH to evaluate the posterior distribution of R_MAH, from which the significance of a non-zero R_MAH (i.e. an atmosphere is present) is calculated.

[ascl:1307.017] NEST: Noble Element Simulation Technique

NEST (Noble Element Simulation Technique) offers comprehensive, accurate, and precise simulation of the excitation, ionization, and corresponding scintillation and electroluminescence processes in liquid noble elements, useful for direct dark matter detectors, double beta decay searches, PET scans, and general radiation detection technology. Written in C++, NEST is an add-on module for the Geant4 simulation package that incorporates more detailed physics than is currently available into the simulation of scintillation. NEST is of particular use for low-energy nuclear recoils. All available liquid xenon data on nuclear recoils and electron recoils to date have been taken into consideration in arriving at the current models. NEST also handles the magnitude of the light and charge yields of nuclear recoils, including their electric field dependence, thereby shedding light on the possibility of detection or exclusion of a low-mass dark matter WIMP by liquid xenon detectors.

[ascl:1308.004] LensEnt2: Maximum-entropy weak lens reconstruction

LensEnt2 is a maximum entropy reconstructor of weak lensing mass maps. The method takes each galaxy shape as an independent estimator of the reduced shear field and incorporates an intrinsic smoothness, determined by Bayesian methods, into the reconstruction. The uncertainties from both the intrinsic distribution of galaxy shapes and galaxy shape estimation are carried through to the final mass reconstruction, and the mass within arbitrarily shaped apertures are calculated with corresponding uncertainties. The input is a galaxy ellipticity catalog with each measured galaxy shape treated as a noisy tracer of the reduced shear field, which is inferred on a fine pixel grid assuming positivity, and smoothness on scales of w arcsec where w is an input parameter. The ICF width w can be chosen by computing the evidence for it.

[ascl:1308.006] BASIN: Beowulf Analysis Symbolic INterface

BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.

[ascl:1308.009] CReSyPS: Stellar population synthesis code

CReSyPS (Code Rennais de Synthèse de Populations Stellaires) is a stellar population synthesis code that determines core overshooting amount for Magellanic clouds main sequence stars.

[ascl:1309.006] VOPlot: Toolkit for Scientific Discovery using VOTables

VOPlot is a tool for visualizing astronomical data. It was developed in Java and acts on data available in VOTABLE, ASCII and FITS formats. VOPlot is available as a stand alone version, which is to be installed on the user's machine, or as a web-based version fully integrated with the VizieR database.

[ascl:1311.012] ETC: Exposure Time Calculator

Written for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey, the exposure time calculator (ETC) works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The program may be useful outside of WFIRST but no warranties are made regarding its suitability for general purposes. The software is available for download; IPAC maintains a web interface for those who wish to run a small number of cases without having to download the package.

[ascl:1312.001] SERPent: Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry

SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.

[ascl:1402.029] wssa_utils: WSSA 12 micron dust map utilities

wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.

[ascl:1403.011] RMHB: Hierarchical Reverberation Mapping

RMHB is a hierarchical Bayesian code for reverberation mapping (RM) that combines results of a sparsely sampled broad line region (BLR) light curve and a large sample of active galactic nuclei (AGN) to infer properties of the sample of the AGN. The key idea of RM is to measure the time lag τ between variations in the continuum emission from the accretion disc and subsequent response of the broad line region (BLR). The measurement of τ is typically used to estimate the physical size of the BLR and is combined with other measurements to estimate the black hole mass MBH. A major difficulty with RM campaigns is the large amount of data needed to measure τ. RMHB allows a clear interpretation of a posterior distribution for hyperparameters describing the sample of AGN.

[ascl:1405.005] HIIPHOT: Automated Photometry of H II Regions

HIIPHOT enables accurate photometric characterization of H II regions while permitting genuine adaptivity to irregular source morphology. It makes a first guess at the shapes of all sources through object recognition techniques; it then allows for departure from such idealized "seeds" through an iterative growing procedure and derives photometric corrections for spatially coincident diffuse emission from a low-order surface fit to the background after exclusion of all detected sources.

[ascl:1405.014] POLPACK: Imaging polarimetry reduction package

POLPACK maps the linear or circular polarization of extended astronomical objects, either in a single waveband, or in multiple wavebands (spectropolarimetry). Data from both single and dual beam polarimeters can be processed. It is part of the Starlink software collection (ascl:1110.012).

[ascl:1406.001] ASURV: Astronomical SURVival Statistics

ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

[ascl:1411.024] CGS3DR: UKIRT CGS3 data reduction software

CGS3DR is data reduction software for the UKIRT CGS3 mid-infrared grating spectrometer instrument. It includes a command-line interface and a GUI. The software, originally on VMS, was ported to Unix. It uses Starlink (ascl:1110.012) infrastructure libraries.

[ascl:1407.006] SAMI: Sydney-AAO Multi-object Integral field spectrograph pipeline

The SAMI (Sydney-AAO Multi-object Integral field spectrograph) pipeline reduces data from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) for the SAMI Galaxy Survey. The python code organizes SAMI data and, along with the AAO 2dfdr package, carries out all steps in the data reduction, from raw data to fully calibrated datacubes. The principal steps are: data management, use of 2dfdr to produce row-stacked spectra, flux calibration, correction for telluric absorption, removal of atmospheric dispersion, alignment of dithered exposures, and drizzling onto a regular output grid. Variance and covariance information is tracked throughout the pipeline. Some quality control routines are also included.

[ascl:1407.014] VIDE: The Void IDentification and Examination toolkit

The Void IDentification and Examination toolkit (VIDE) identifies voids using a modified version of the parameter-free void finder ZOBOV (ascl:1304.005); a Voronoi tessellation of the tracer particles is used to estimate the density field followed by a watershed algorithm to group Voronoi cells into zones and subsequently voids. Output is a summary of void properties in plain ASCII; a Python API is provided for analysis tasks, including loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles.

[ascl:1407.015] BayesFlare: Bayesian method for detecting stellar flares

BayesFlare identifies flaring events in light curves released by the Kepler mission; it identifies even weak events by making use of the flare signal shape. The package contains functions to perform Bayesian hypothesis testing comparing the probability of light curves containing flares to that of them containing noise (or non-flare-like) artifacts. BayesFlare includes functions in its amplitude-marginalizer suite to account for underlying sinusoidal variations in light curve data; it includes such variations in the signal model, and then analytically marginalizes over them.

[ascl:1408.007] Skycorr: Sky emission subtraction for observations without plain sky information

Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.

[ascl:1411.025] SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.