**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2109.004]
DviSukta: Spherically Averaged Bispectrum calculator

DviSukta calculates the Spherically Averaged Bispectrum (SABS). The code is based on an optimized direct estimation method, is written in C, and is parallelized. DviSukta starts by reading the real space gridded data and performing a 3D Fourier transform of it. Alternatively, it starts by reading the data already in Fourier space. The grid spacing, number of k1 bins, number of n bins, and number of cos(theta) bins need to be specified in the input file.

[ascl:2312.024]
C^{2}-Ray3Dm1D_Helium: Hydrogen + helium version of C^{2}-Ray

C2-Ray3Dm1D_Helium is the hydrogen + helium version of the radiative transfer photo-ionization code C^{2}-Ray. It combines the 1D and 3D versions of the code.

[ascl:2312.025]
pyC^{2}Ray: Python interface to C^{2}Ray with GPU acceleration

Hirling, Patrick; Bianco, Michele; Giri, Sambit K.; Iliev, Ilian T.; Mellema, Garrelt; Kneib, Jean-Paul

pyC^{2}Ray updates C^{2}-Ray (ascl:2312.022), an astrophysical radiative transfer code used to simulate the Epoch of Reionization (EoR). pyC^{2}Ray includes a new raytracing method, ASORA, developed for GPUs, and provides a Python interface for customizable use of the code. The core features of C^{2}-Ray, written in Fortran90, are wrapped using f2py as a Python extension module, while the raytracing library ASORA is implemented in C++ using CUDA. Both are native Python C-extensions and can be directly accessed from any Python script.

[ascl:2312.022]
C^{2}-Ray: Time-dependent photo-ionization calculations

C^{2}-Ray calculates spherical symmetric time-dependent photo-ionization in 1D with the source at the origin for hydrogen only. The code is explicitly photon-conserving and uses an analytical relaxation solution for the ionization rate equations for each time step, thus enabling integration of the equation of transfer along a ray with fewer cells and time steps than previous methods. It is suitable for coupling radiative transfer to gas and N-body dynamics methods on fixed or adaptive grids. C^{2}-Ray is not parallelized but contains an MPI module for compatibility with the 3D version (C^{2}-Ray3Dm).

[ascl:2312.023]
C^{2}-Ray3Dm: 3D version of C^{2}-Ray for multiple sources, hydrogen only

C^{2}-Ray3Dm performs time-dependent photo-ionization calculations for 3D multiple sources, and for hydrogen only. Based on C^{2}-Ray (ascl:2312.022), it runs under both MPI and OpenMP. The length of subroutines has been reduced to make the code more manageable and easier to read.