ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Miyatake, Hironao'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2103.009] DarkEmulator: Cosmological emulation code for halo clustering statistics

The cosmology code DarkEmulator calculates summary statistics of large scale structure constructed as a part of Dark Quest Project. The “dark_emulator” python package enables fast and accurate computations of halo clustering quantities. The code supports the halo mass function, halo-matter cross-correlation, and halo auto-correlation as a function of halo masses, redshift, separations and cosmological models.

[ascl:2309.013] maszcal: Mass calibrations for thermal-SZ clusters

maszcal calibrates the observable-mass relation for galaxy clusters, with a focus on the thermal Sunyaev-Zeldovich signal's relation to mass. maszcal explicitly models baryonic matter density profiles, differing from most previous approaches that treat galaxy clusters as purely dark matter. To do this, it uses a generalized Nararro-Frenk-White (GNFW) density to represent the baryons, while using the more typical NFW profile to represent dark matter.

[ascl:2401.011] ostrich: Surrogate modeling using PCA and Gaussian process interpolation

Ostrich emulates surrogate models for complex and expensive functions using Principal Component Analysis (PCA) to decompose a signal, then interpolate the PCA weights over the parameters θ using a Gaussian Process interpolator. The code is trained on samples from the expensive functions, recreating and interpolating between those training samples with reduced computational cost, and recalculating for each use.

[ascl:2412.021] BlendingToolKit: Tools to create blend catalogs, produce training samples, and implement blending metrics

BlendingToolKit (BTK) generates images of blended objects and evaluate performance metrics on various detection, deblending and measurement algorithms. The toolkit is a convenient way to produce multi-band postage stamp images of blend scenes and evaluate the performance of deblending algorithms, as well as train samples for machine learning algorithms.