**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1010.034]
iCosmo: An Interactive Cosmology Package

iCosmo is a software package to perform interactive cosmological calculations for the low redshift universe. The computation of distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also performs the computation of observables for several cosmological probes such as weak gravitational lensing, baryon acoustic oscillations and supernovae. The associated errors for these observables can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for the calculation of cosmological forecasts with Fisher matrices which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific library available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient evolutive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers in the field of cosmology.

[ascl:1102.005]
MRLENS: Multi-Resolution methods for gravitational LENSing

The MRLENS package offers a new method for the reconstruction of weak lensing mass maps. It uses the multiscale entropy concept, which is based on wavelets, and the False Discovery Rate which allows us to derive robust detection levels in wavelet space. We show that this new restoration approach outperforms several standard techniques currently used for weak shear mass reconstruction. This method can also be used to separate E and B modes in the shear field, and thus test for the presence of residual systematic effects. We concentrate on large blind cosmic shear surveys, and illustrate our results using simulated shear maps derived from N-Body Lambda-CDM simulations with added noise corresponding to both ground-based and space-based observations.

[ascl:1303.003]
CosmoHammer: Cosmological parameter estimation with the MCMC Hammer

CosmoHammer is a Python framework for the estimation of cosmological parameters. The software embeds the Python package emcee by Foreman-Mackey et al. (2012) and gives the user the possibility to plug in modules for the computation of any desired likelihood. The major goal of the software is to reduce the complexity when one wants to extend or replace the existing computation by modules which fit the user's needs as well as to provide the possibility to easily use large scale computing environments. CosmoHammer can efficiently distribute the MCMC sampling over thousands of cores on modern cloud computing infrastructure.

[ascl:1307.014]
Shapelets: Image Modelling

Shapelets are a complete, orthonormal set of 2D basis functions constructed from Laguerre or Hermite polynomials weighted by a Gaussian. A linear combination of these functions can be used to model any image, in a similar way to Fourier or wavelet synthesis. The shapelet decomposition is particularly efficient for images localized in space, and provide a high level of compression for individual galaxies in astronomical data. The basis has many elegant mathematical properties that make it convenient for image analysis and processing.

[ascl:1411.005]
HOPE: Just-in-time Python compiler for astrophysical computations

HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

[ascl:1607.019]
HIDE: HI Data Emulator

Akeret, Joel; Seehars, Sebastian; Chang, Chihway; Monstein, Christian; Amara, Adam; Refregier, Alexandre

HIDE (HI Data Emulator) forward-models the process of collecting astronomical radio signals in a single dish radio telescope instrument and outputs pixel-level time-ordered-data. Written in Python, HIDE models the noise and RFI modeling of the data and with its companion code SEEK (ascl:1607.020) provides end-to-end simulation and processing of radio survey data.

[ascl:1607.020]
SEEK: Signal Extraction and Emission Kartographer

Akeret, Joel; Seehars, Sebastian; Chang, Chihway; Monstein, Christian; Amara, Adam; Refregier, Alexandre

SEEK (Signal Extraction and Emission Kartographer) processes time-ordered-data from single dish radio telescopes or from the simulation pipline HIDE (ascl:1607.019), removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and recovers the astronomical radio signal. With its companion code HIDE (ascl:1607.019), it provides end-to-end simulation and processing of radio survey data.

[ascl:1611.002]
tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

[ascl:2004.007]
PyCosmo: Multi-purpose cosmology calculation tool

Tarsitano, Federica; Schmitt, Uwe; Refregier, Alexandre; Akeret, Joel; Amara, Adam; Gamper, Lukas; Nicola, Andrina

PyCosmo provides accurate predictions for cosmological observables including background quantities, power spectra and Limber and beyond-Limber angular power spectra. The software is designed to be interactive and user-friendly. It is available for download and is also offered on an interactive platform (PyCosmo Hub), which allows users to perform their own computations using Jupyter Notebooks without installing any software.