ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Rodney, Steven A'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1501.010] PythonPhot: Simple DAOPHOT-type photometry in Python

PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.

[ascl:1805.017] SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

[ascl:1902.001] SNTD: Supernova Time Delays

Supernova Time Delays (SNTD) simulates and measures time delay of multiply-imaged supernovae, and offers an improved characterization of the uncertainty caused by microlensing. Lensing time delays can be determined by fitting the multiple light curves of these objects; measuring these delays provide precise tests of lens models or constraints on the Hubble constant and other cosmological parameters that are independent of the local distance ladder. Fitting the effects of microlensing without an accurate prior often leads to biases in the time delay measurement and over-fitting to the data; this can be mitigated by using a Gaussian Process Regression (GPR) technique to determine the uncertainty due to microlensing. SNTD can produce accurate simulations for wide-field time domain surveys such as LSST and WFIRST.