**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1904.027]
nbodykit: Massively parallel, large-scale structure toolkit

nbodykit provides algorithms for analyzing cosmological datasets from N-body simulations and large-scale structure surveys, and takes advantage of the abundance and availability of large-scale computing resources. The package provides a unified treatment of simulation and observational datasets by insulating algorithms from data containers, and reduces wall-clock time by scaling to thousands of cores. All algorithms are parallel and run with Message Passing Interface (MPI); the code is designed to be deployed on large super-computing facilities. nbodykit offers an interactive user interface that performs as well in a Jupyter notebook as on super-computing machines.

[ascl:2105.014]
encore: Efficient isotropic 2-, 3-, 4-, 5- and 6-point correlation functions

Philcox, Oliver H. E.; Slepian, Zachary; Hou, Jiamin; Warner, Craig; Cahn, Robert N.; Eisenstein, Daniel J.

encore (Efficient *N*-point Correlator Estimation) estimates the isotropic NPCF multipoles for an arbitrary survey geometry in *O*(*N*^{2}) time, with optional GPU support. The code features support for the isotropic 2PCF, 3PCF, 4PCF, 5PCF and 6PCF, with the option to subtract the Gaussian 4PCF contributions at the estimator level. For the 4PCF, 5PCF and 6PCF algorithms, the runtime is dominated by sorting the spherical harmonics into bins, which has complexity *O*(*N*_galaxy x *N*_bins^{3} x *N*_ell^{5}) [4PCF], *O*(*N*_galaxy x N_bins^{4} x N_ell^{8}) [5PCF] or *O*(*N*_galaxy x *N*_bins^{5} x *N*_ell^{11}) [6PCF]. The higher-point functions are slow to compute unless *N*_bins and *N*_ell are small.