Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Tonry, John'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1106.014] Transit Analysis Package (TAP and autoKep): IDL Graphical User Interfaces for Extrasolar Planet Transit Photometry

We present an IDL graphical user interface-driven software package designed for the analysis of extrasolar planet transit light curves. The Transit Analysis Package (TAP) software uses Markov Chain Monte Carlo (MCMC) techniques to fit light curves using the analytic model of Mandel and Agol (2002). The package incorporates a wavelet based likelihood function developed by Carter and Winn (2009) which allows the MCMC to assess parameter uncertainties more robustly than classic chi-squared methods by parameterizing uncorrelated "white" and correlated "red" noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc). The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a user's specific data set and has been thoroughly tested on ground-based and Kepler photometry. AutoKep provides a similar GUI for the preparation of Kepler MAST archive data for analysis by TAP or any other analysis software. This paper describes the software release and provides instructions for its use.

[ascl:1107.001] SNID: Supernova Identification

We present an algorithm to identify the type of an SN spectrum and to determine its redshift and age. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the Supernova Identification (SNID) code. It is used by members of ongoing high-redshift SN searches to distinguish between type Ia and type Ib/c SNe, and to identify "peculiar" SNe Ia. We develop a diagnostic to quantify the quality of a correlation between the input and template spectra, which enables a formal evaluation of the associated redshift error. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the SN host galaxy spectrum, we show that accurate redshifts (with a typical error less than 0.01) can be determined for SNe Ia without a spectrum of the host galaxy. Last, the age of an input spectrum is determined with a typical 3-day accuracy, shown here by using high-redshift SNe Ia with well-sampled light curves. The success of the correlation technique confirms the similarity of some SNe Ia at low and high redshifts. The SNID code, which is available to the community, can also be used for comparative studies of SN spectra, as well as comparisons between data and models.