**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2104.024]
GAMMA: Relativistic hydro and local cooling on a moving mesh

GAMMA models relativistic hydrodynamics and non-thermal emission on a moving mesh. It uses an arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion to avoid mesh entanglement and associated computational costs. Shock detection, particle injection and local calculation of their evolution including radiative cooling are done at runtime. The package is modular; though it was designed with GRB physics applications in mind, new solvers and geometries can be implemented easily, making GAMMA suitable for a wide range of applications.

[ascl:2106.026]
Katu: Interaction of particles in plasma simulator

Katu evolves the interaction of particles (photons, protons, neutrons, leptons, pions and neutrinos) in plasma. The package comes with wrappers for emcee (ascl:1303.002) and pymultinest (ascl:1606.005) for Bayesian analysis, making the software applicable to blazars and able to extract relevant statistical information from their electromagnetic (and neutrino, if applicable) flux. The code is optimized for fast performance, and can be easily modified and extended.

[ascl:2306.059]
BOXFIT: Gamma-ray burst afterglow light curve generator

BOXFIT calculates light curves and spectra for arbitrary observer times and frequencies and of performing (broadband) data fits using the downhill simplex method combined with simulated annealing. The flux value for a given observer time and frequency is a function of various variables that set the explosion physics (energy of the explosion, circumburst number density and jet collimation angle), the radiative process (magnetic field generation efficiency, electron shock-acceleration efficiency and synchrotron power slope for the electron energy distribution) and observer position (distance, redshift and angle). The code can be run both in parallel and on a single core. Because a data fit takes many iterations, this is best done in parallel. Single light curves and spectra can readily be done on a single core.