Results 2751-2800 of 3762 (3660 ASCL, 102 submitted)
ROBOSPECT, written in C, automatically measures and deblends line equivalent widths for absorption and emission spectra. ROBOSPECT should not be used for stars with spectra in which there is no discernible continuum over large wavelength regions, nor for the most carbon-enhanced stars for which spectral synthesis would be favored. Although ROBOSPECT was designed for metal-poor stars, it is capable of fitting absorption and emission features in a variety of astronomical sources.
AstroLines adjusts spectral line parameters (gf and damping constant) starting from an initial line list. Written in IDL and tailored to the APO Galactic Evolution Experiment (APOGEE), it runs a slightly modified version of MOOG (ascl:1202.009) to compare synthetic spectra with FTS spectra of the Sun and Arcturus.
MaLTPyNT (Matteo's Libraries and Tools in Python for NuSTAR Timing) provides a quick-look timing analysis of NuSTAR data, properly treating orbital gaps and exploiting the presence of two independent detectors by using the cospectrum as a proxy for the power density spectrum. The output of the analysis is a cospectrum, or a power density spectrum, that can be fitted with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002). The software also calculates time lags. Though written for NuSTAR data, MaLTPyNT can also perform standard spectral analysis on X-ray data from other satellite such as XMM-Newton and RXTE.
ketu, written in Python, searches K2 light curves for evidence of exoplanets; the code simultaneously fits for systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues and the transit signals of interest. Though more computationally expensive than standard search algorithms, it can be efficiently implemented and used to discover transit signals.
XPCell simulates convective plasma cells. The program is implemented in two versions, one using GNUPLOT and the second OpenGL. XPCell offers a GUI to introduce the parameter required by the program.
XFGL visualizes gravitational lenses. It has an XFORM GUI and is completely interactive with the mouse. It uses OpenGL for the simulations.
AMIsurvey is a fully automated calibration and imaging pipeline for data from the AMI-LA radio observatory; it has two key dependencies. The first is drive-ami, included in this entry. Drive-ami is a Python interface to the specialized AMI-REDUCE calibration pipeline, which applies path delay corrections, automatic flags for interference, pointing errors, shadowing and hardware faults, applies phase and amplitude calibrations, Fourier transforms the data into the frequency domain, and writes out the resulting data in uvFITS format. The second is chimenea, which implements an automated imaging algorithm to convert the calibrated uvFITS into science-ready image maps. AMIsurvey links the calibration and imaging stages implemented within these packages together, configures the chimenea algorithm with parameters appropriate to data from AMI-LA, and provides a command-line interface.
libnova is a general purpose, double precision, celestial mechanics, astrometry and astrodynamics library. Among many other calculations, it can calculate aberration, apparent position, proper motion, planetary positions, orbit velocities and lengths, angular separation of bodies, and hyperbolic motion of bodies.
Camelus provides a prediction on weak lensing peak counts from input cosmological parameters. Written in C, it samples halos from a mass function and assigns a profile, carries out ray-tracing simulations, and then counts peaks from ray-tracing maps. The creation of the ray-tracing simulations requires less computing time than N-body runs and the results is in good agreement with full N-body simulations.
Magnetron, written in Python, decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. Markov Chain Monte Carlo (MCMC) sampling and reversible jumps between models with different numbers of parameters are used to characterize the posterior distributions of the model parameters and the number of components per burst.
Rabacus performs analytic radiative transfer calculations in simple geometries relevant to cosmology and astrophysics; it also contains tools to calculate cosmological quantities such as the power spectrum and mass function. With core routines written in Fortran 90 and then wrapped in Python, the execution speed is thousands of times faster than equivalent routines written in pure Python.
SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access.
SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).
PolyChord is a Bayesian inference tool for the simultaneous calculation of evidences and sampling of posterior distributions. It is a variation on John Skilling's Nested Sampling, utilizing Slice Sampling to generate new live points. It performs well on moderately high dimensional (~100s D) posterior distributions, and can cope with arbitrary degeneracies and multimodality.
nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.
The Hierarchical Data System (HDS) is a file-based hierarchical data system designed for the storage of a wide variety of information. It is particularly suited to the storage of large multi-dimensional arrays (with their ancillary data) where efficient access is needed. It is a key component of the Starlink software collection (ascl:1110.012) and is used by the Starlink N-Dimensional Data Format (NDF) library (ascl:1411.023).
HDS organizes data into hierarchies, broadly similar to the directory structure of a hierarchical filing system, but contained within a single HDS container file. The structures stored in these files are self-describing and flexible; HDS supports modification and extension of structures previously created, as well as functions such as deletion, copying, and renaming. All information stored in HDS files is portable between the machines on which HDS is implemented. Thus, there are no format conversion problems when moving between machines. HDS can write files in a private binary format (version 4), or be layered on top of HDF5 (version 5).
Based on the freely available CHIANTI (ascl:9911.004) database and software, KAPPA synthesizes line and continuum spectra from the optically thin spectra that arise from collisionally dominated astrophysical plasmas that are the result of non-Maxwellian κ-distributions detected in the solar transition region and flares. Ionization and recombination rates together with the ionization equilibria are provided for a range of κ values. Distribution-averaged collision strengths for excitation are obtained by an approximate method for all transitions in all ions available within CHIANTI; KAPPA also offers tools for calculating synthetic line and continuum intensities.
PyBDSF (Python Blob Detector and Source Finder, formerly PyBDSM) decomposes radio interferometry images into sources and makes their properties available for further use. PyBDSF can decompose an image into a set of Gaussians, shapelets, or wavelets as well as calculate spectral indices and polarization properties of sources and measure the psf variation across an image. PyBDSF uses an interactive environment based on CASA (ascl:1107.013); PyBDSF may also be used in Python scripts.
Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single X2 value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.
PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.
ADAM (All-Data Asteroid Modeling) models asteroid shape reconstruction from observations. Developed in MATLAB with core routines in C, its features include general nonconvex and non-starlike parametric 3D shape supports and reconstruction of asteroid shape from any combination of lightcurves, adaptive optics images, HST/FGS data, disk-resolved thermal images, interferometry, and range-Doppler radar images. ADAM does not require boundary contour extraction for reconstruction and can be run in parallel.
N-GenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET (ascl:0003.001) or AREPO (ascl:1909.010).
OpenOrb (OOrb) contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. It uses the least-squares method and also contains both Monte-Carlo (MC) and Markov-Chain MC versions of the statistical ranging method. Ranging obtains sampled, non-Gaussian orbital-element probability-density functions and is optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval.
RH 1.5D performs Zeeman multi-level non-local thermodynamical equilibrium calculations with partial frequency redistribution for an arbitrary amount of chemical species. Derived from the RH code and written in C, it calculates spectra from 3D, 2D or 1D atmospheric models on a column-by-column basis (or 1.5D). It includes optimization features to speed up or improve convergence, which are particularly useful in dynamic models of chromospheres. While one should be aware of its limitations, the calculation of spectra using the 1.5D or column-by-column is a good approximation in many cases, and generally allows for faster convergence and more flexible methods of improving convergence. RH 1.5D scales well to at least tens of thousands of CPU cores.
Colossus is a collection of Python modules for cosmology and dark matter halos calculations. It performs cosmological calculations with an emphasis on structure formation applications, implements general and specific density profiles, and provides a large range of models for the concentration-mass relation, including a conversion to arbitrary mass definitions.
Exoplanet determines the posterior distribution of exoplanets by use of a trans-dimensional Markov Chain Monte Carlo method within Nested Sampling. This method finds the posterior distribution in a single run rather than requiring multiple runs with trial values.
GalPaK 3D extracts the intrinsic (i.e. deconvolved) galaxy parameters and kinematics from any 3-dimensional data. The algorithm uses a disk parametric model with 10 free parameters (which can also be fixed independently) and a MCMC approach with non-traditional sampling laws in order to efficiently probe the parameter space. More importantly, it uses the knowledge of the 3-dimensional spread-function to return the intrinsic galaxy properties and the intrinsic data-cube. The 3D spread-function class is flexible enough to handle any instrument.
GalPaK 3D can simultaneously constrain the kinematics and morphological parameters of (non-merging, i.e. regular) galaxies observed in non-optimal seeing conditions and can also be used on AO data or on high-quality, high-SNR data to look for non-axisymmetric structures in the residuals.
Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.
Exorings, written in Python, contains tools for displaying and fitting giant extrasolar planet ring systems; it uses FITS formatted data for input.
The Sloan Digital Sky Survey (SDSS) produces large amounts of data daily. transfer, written in Python, provides the effective automation needed for daily data transfer operations and management and operates essentially free of human intervention. This package has been tested and used successfully for several years.
PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.
BIANCHI provides functionality to support the simulation of Bianchi Type VIIh induced temperature fluctuations in CMB maps of a universe with shear and rotation. The implementation is based on the solutions to the Bianchi models derived by Barrow et al. (1985), which do not incorporate any dark energy component. Functionality is provided to compute the induced fluctuations on the sphere directly in either real or harmonic space.
Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.
LP-VIcode computes variational chaos indicators (CIs) quickly and easily. The following CIs are included:
PsrPopPy is a Python implementation of the Galactic population and evolution of radio pulsars modelling code PSRPOP (ascl:1107.019).
DECA performs photometric analysis of images of disk and elliptical galaxies having a regular structure. It is written in Python and combines the capabilities of several widely used packages for astronomical data processing such as IRAF (ascl:9911.002), SExtractor (ascl:1010.064), and the GALFIT (ascl:1104.010) code to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention.
Dst is a fully parallel Python destriping code for polarimeter data; destriping is a well-established technique for removing low-frequency correlated noise from Cosmic Microwave Background (CMB) survey data. The software destripes correctly formatted HDF5 datasets and outputs hitmaps, binned maps, destriped maps and baseline arrays.
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Python-qucs automates the process of preparing input data, running simulations and exporting results of QUCS (Quasi Universal Circuit Simulator) simulations.
NIGO (Numerical Integrator of Galactic Orbits) predicts the orbital evolution of test particles moving within a fully-analytical gravitational potential generated by a multi-component galaxy. The code can simulate the orbits of stars in elliptical and disc galaxies, including non-axisymmetric components represented by a spiral pattern and/or rotating bar(s).
PynPoint uses principal component analysis to detect and estimate the flux of exoplanets in two-dimensional imaging data. It processes many, typically several thousands, of frames to remove the light from the star so as to reveal the companion planet.
The code has been significantly rewritten and expanded; please see ascl:1812.010.
SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.
CRPropa computes the observable properties of UHECRs and their secondaries in a variety of models for the sources and propagation of these particles. CRPropa takes into account interactions and deflections of primary UHECRs as well as propagation of secondary electromagnetic cascades and neutrinos. CRPropa makes use of the public code SOPHIA (ascl:1412.014), and the TinyXML, CFITSIO (ascl:1010.001), and CLHEP libraries. A major advantage of CRPropa is its modularity, which allows users to implement their own modules adapted to specific UHECR propagation models. An updated version, CRPropa3 (ascl:2208.016), is available.
GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, Fermitools (ascl:1905.011), and Tempo2 (ascl:1210.015).
The TraP is a pipeline for detecting and responding to transient and variable sources in a stream of astronomical images. Images are initially processed using a pure-Python source-extraction package, PySE (ascl:1805.026), which is bundled with the TraP. Source positions and fluxes are then loaded into a SQL database for association and variability detection. The database structure allows for estimation of past upper limits on newly detected sources, and for forced fitting of previously detected sources which have since dropped below the blind-extraction threshold. Developed with LOFAR data in mind, the TraP has been used with data from other radio observatories.
Make Me A Star (MMAS) quickly generates stellar collision remnants and can be used in combination with realistic dynamical simulations of star clusters that include stellar collisions. The code approximates the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These simple models agree very well with those from SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of these models also matches closely that of the more accurate hydrodynamic models.
URCHIN is a Smoothed Particle Hydrodynamics (SPH) reverse ray tracer (i.e. from particles to sources). It calculates the amount of shielding from a uniform background that each particle experiences. Preservation of the adaptive density field resolution present in many gas dynamics codes and uniform sampling of gas resolution elements with rays are two of the benefits of URCHIN; it also offers preservation of Galilean invariance, high spectral resolution, and preservation of the standard uniform UV background in optically thin gas.
Hrothgar is a parallel minimizer and Markov Chain Monte Carlo generator. It has been used to solve optimization problems in astrophysics (galaxy cluster mass profiles) as well as in experimental particle physics (hadronic tau decays).
PIAO is an efficient memory-controlled Python code that uses the standard spherical overdensity (SO) algorithm to identify halos. PIAO employs two additional parameters besides the overdensity Δc. The first is the mesh-box size, which splits the whole simulation box into smaller ones then analyzes them one-by-one, thereby overcoming a possible memory limitation problem that can occur when dealing with high-resolution, large-volume simulations. The second is the smoothed particle hydrodynamics (SPH) neighbors number, which is used for the SPH density calculation.
HMF calculates the Halo Mass Function (HMF) given any set of cosmological parameters and fitting function and serves as the backend for the web application HMFcalc. Written in Python, it allows for dynamic accurate calculation of the transfer function with CAMB (ascl:1102.026) and efficient and self-consistent parameter updates. HMF offers exploration of the effects of cosmological parameters, redshift and fitting function on the predicted HMF.
BRUCE and KYLIE, written in Fortran 77, synthesize the spectra of pulsating stars. BRUCE constructs a point-sampled model for the surface of a rotating, gravity-darkened star, and then subjects this model to perturbations arising from one or more non-radial pulsation modes. Departures from adiabaticity can be taken into account, as can the Coriolis force through adoption of the so-called traditional approximation. BRUCE writes out a time-sequence of perturbed surface models. This sequence is read in by KYLIE, which synthesizes disk-integrated spectra for the models by co-adding the specific intensity emanating from each visible point toward the observer. The specific intensity is calculated by interpolation in a large temperature-gravity-wavelength-angle grid of pre-calculated intensity spectra.
DAMIT (Database of Asteroid Models from Inversion Techniques) is a database of three-dimensional models of asteroids computed using inversion techniques; it provides access to reliable and up-to-date physical models of asteroids, i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects as well as for statistical studies of the whole set. The source codes for lightcurve inversion routines together with brief manuals, sample lightcurves, and the code for the direct problem are available for download.
Would you like to view a random code?