➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
SeeKAT is a Python implementation of a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once to (sub-)arcsecond precision. It reads in list of detections (RA, Dec, S/N) and the beam PSF and computes a covariance matrix of the S/N value ratios, assuming 1-sigma Gaussian errors on each measurement. It models the aggregate beam response by arranging beam PSFs appropriately relative to each other and calculates a likelihood distribution of obtaining the observed S/N in each beam according to the modeled response. In addition, SeeKAT can plot the likelihood function over RA and Dec with 1-sigma uncertainty, overlaid on the beam coordinates and sizes.
The folding pipeline PulsarX searches for pulsars. The code includes radio frequency interference mitigation, de-dispersion, folding, and parameter optimization, and supports both psrfits and filterbank data formats. The toolset has two implementations of the folding pipelines; one uses a brute-force de-dispersion algorithm, and the other an algorithm that becomes more efficient than the brute-force de-dispersion algorithm as the number of candidates increases. PulsarX is appropriate for large-scale pulsar surveys.