➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
We describe the first parallel implementation of an adaptive particle-particle, particle-mesh code with smoothed particle hydrodynamics. Parallelisation of the serial code, "Hydra," is achieved by using CRAFT, a Cray proprietary language which allows rapid implementation of a serial code on a parallel machine by allowing global addressing of distributed memory.
The collisionless variant of the code has already completed several 16.8 million particle cosmological simulations on a 128 processor Cray T3D whilst the full hydrodynamic code has completed several 4.2 million particle combined gas and dark matter runs. The efficiency of the code now allows parameter-space explorations to be performed routinely using $64^3$ particles of each species. A complete run including gas cooling, from high redshift to the present epoch requires approximately 10 hours on 64 processors.
AP3M is an adaptive particle-particle, particle-mesh code. It is older than Hydra (ascl:1103.010) but faster and more memory-efficient for dark-matter only calculations. The Adaptive P3M technique (AP3M) is built around the standard P3M algorithm. AP3M produces fully equivalent forces to P3M but represents a more efficient implementation of the force splitting idea of P3M. The AP3M program may be used in any of the three modes with an appropriate choice of input parameter.