➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
plan-net uses machine learning with an ensemble of Bayesian neural networks for atmospheric retrieval; this approach yields greater accuracy and more robust uncertainties than a single model. A new loss function for BNNs learns correlations between the model outputs. Performance is improved by incorporating domain-specific knowledge into the machine learning models and provides additional insight by inferring the covariance of the retrieved atmospheric parameters.
THAI analyzes and visualizes climate model output for the TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) project, which examines TRAPPIST-1e under several different atmosphere scenarios. The package includes functions to preprocess and clean the data and common and model-specific variables for convenience. THAI processes and plots the data, allowing for examination and intercomparison of results from the different models.