➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
spalipy performs detection-based astronomical image registration in Python. A source image is transformed to the pixel-coordinate system of a template image using their respective detections as tie-points by finding matching quads of detections. spalipy also includes an optional additional warping of the initial affine transformation via splines to achieve accurate registration in the case of non-homogeneous coordinate transforms. This is particularly useful in the case of optically distorted or wide field-of-view images.
pympc performs checks for the presence of minor and major Solar System bodies at specified coordinates. Orbital elements from the Minor Planet Center are used to propagate orbits to determine the position of asteroids, comets, NEOS, planets and major moons at the request epoch. Topocentric corrections are included to allow for observatory-specific positions. The requested position can also be checked for being within the Hill Sphere (in projection) of any Solar System planet.