Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Morton, Timothy'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1503.010] isochrones: Stellar model grid package

Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

[ascl:1503.011] VESPA: False positive probabilities calculator

Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA) calculates false positive probabilities and statistically validates transiting exoplanets. Written in Python, it uses isochrones [ascl:1503.010] and the package simpledist.

[ascl:2007.001] GProtation: Measuring stellar rotation periods with Gaussian processes

GProtation measures stellar rotation periods with Gaussian processes.

This code is no longer being maintained. Please consider using celerite (ascl:1709.008) or exoplanet (ascl:1910.005) instead.

[submitted] BSAVI: Bayesian Sample Visualizer for Cosmological Likelihoods

BSAVI (Bayesian Sample Visualizer) is a tool to aid likelihood analysis of model parameters where samples from a distribution in the parameter space are used as inputs to calculate a given observable. For example, selecting a range of samples will allow you to easily see how the observables change as you traverse the sample distribution. At the core of BSAVI is the Observable object, which contains the data for a given observable and instructions for plotting it. It is modular, so you can write your own function that takes the parameter values as inputs, and BSAVI will use it to compute observables on the fly. It also accepts tabular data, so if you have pre-computed observables, simply import them alongside the dataset containing the sample distribution to start visualizing.