ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Mugnai, Lorenzo V.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2209.016] RAPOC: Rosseland and Planck mean opacities calculator

RAPOC (Rosseland and Planck Opacity Converter) uses molecular absorption measurements (i.e., wavelength-dependent opacities) for a given temperature, pressure, and wavelength range to calculate Rosseland and Planck mean opacities for use in atmospheric modeling. The code interpolates between discrete data points and can use ExoMol and DACE data, or any user-defined data provided in a readable format. RAPOC is simple, straightforward, and easily incorporated into other codes.

[ascl:2210.006] ExoRad2: Generic point source radiometric model

ExoRad 2.0, a generic point source radiometric model, interfaces with any instrument to provide an estimate of several Payload performance metrics. For each target and for each photometric and spectroscopic channel, the code provides estimates of signals in pixels, saturation times, and read, photon, and dark current noise. ExoRad also provides estimates for the zodiacal background, inner sanctum, and sky foreground.

[ascl:2503.031] ExoSim 2: Exoplanet Observation Simulator 2

ExoSim 2 (Exoplanet Observation Simulator 2) makes spectro-photometric observations of transiting exoplanets from space, ground, and sub-orbital platforms. It is a complete rewrite of ExoSim (ascl:2002.008); it is implemented in Python 3 and uses object-oriented design principles. The package follows a three-step workflow: the creation of focal planes, the production of Sub-Exposure blocks, and the generation of non-destructive reads (NDRs). ExoSim 2 has demonstrated consistency in estimating photon conversion efficiency, saturation time, and signal generation. The simulator has also been validated independently for instantaneous read-out and jitter simulation, and for astronomical signal representation.