➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single X2 value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.
CARACal (Containerized Automated Radio Astronomy Calibration, formerly MeerKATHI) reduces radio-interferometric data. Developed originally as an end-to-end continuum- and line imaging pipeline for MeerKAT, it can also be used with other radio telescopes. CARACal reduces large data sets and produces high-dynamic-range continuum images and spectroscopic data cubes. The pipeline is platform-independent and delivers imaging quality metrics to efficiently assess the data quality.
katdal interacts with the chunk stores and HDF5 files produced by the MeerKAT radio telescope and its predecessors (KAT-7 and Fringe Finder), which are collectively known as MeerKAT Visibility Format (MVF) data sets. The library uses memory carefully, allowing data sets to be inspected and partially loaded into memory. Data sets may be concatenated and split via a flexible selection mechanism. In addition, katdal provides a script to convert these data sets to CASA MeasurementSets.
QuartiCal is the successor to CubiCal (ascl:1805.031). It implements a suite of fast radio interferometric calibration routines exploiting complex optimization. Unlike CubiCal, QuartiCal allows for any available Jones terms to be combined. It can also be deployed on a cluster.
Stimela2 is a new-generation framework for developing data reduction workflows. It is designed for radio astronomy data but can be adapted for other data processing applications. Stimela2 aims at the middle ground between ease of development, human readability, and enabling robust, scalable and reproducible workflows. It represents workflows by linear, concise and intuitive YAML-format "recipes". Atomic data reduction tasks (binary executables, Python functions and code, and CASA tasks) are described by YAML-format "cab definitions" detailing each task's "schema" (inputs and outputs). Stimela2 provides a rich syntax for chaining tasks together, and encourages a high degree of modularity: recipes may be nested into other recipes, and configuration is cleanly separated from recipe logic. Tasks can be executed natively or in isolated environments using containerization technologies such as Apptainer. The container images are open-source and maintained through a companion package called cult-cargo. This enables the development of system-agnostic and fully reproducible workflows. Stimela2 facilitates the deployment of scalable, distributed workflows by interfacing with the Slurm scheduler and the Kubernetes API. The latter allows workflows to be readily deployed in the cloud.
dask-ms is a data access layer that presents Measurement Set v2.0 data to developers as xarray datasets of dask arrays. It supports the CASA Data Table System, Zarr and Apache Arrow formats, but abstracts them away from the developer at the xarray dataset level. It therefore serves as a basis for writing distributed PyData Radio Astronomy applications.
Codex Africanus is a Radio Astronomy algorithms library. It presents radio astronomy algorithms to the user as modular functions accepting NumPy inputs and producing NumPy outputs. Internally, it uses Numba to accelerate these codes and Dask to parallelise and distribute them.