**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2305.011]
DarkMappy: Mapping the dark universe

DarkMappy reconstructs maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem in order to implement hybrid Bayesian dark-matter reconstruction techniques on the plane and on the celestial sphere. These convergence maps support principled uncertainty quantification and provide hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction.

[ascl:2401.009]
Harmonic: Learnt harmonic mean estimator

McEwen, Jason D.; Wallis, Christopher G. R.; Price, Matthew A.; Docherty, Matthew M.; Spurio Mancini, Alessio

harmonic learns an approximate harmonic mean estimator (referred to as a "learnt harmonic mean estimator") from posterior distribution samples to compute the marginal likelihood required for Bayesian model selection. Using a large number of independent Markov chain Monte Carlo (MCMC) chains from another package such as emcee (ascl:1303.002), harmonic uses importance sampling to learn a new target distribution in order to optimize an approximate harmonic estimator while minimizing its variance.

[ascl:2401.017]
QuantifAI: Radio interferometric imaging reconstruction with scalable Bayesian uncertainty quantification

Liaudat, TobĂas I.; Mars, Matthijs; Price, Matthew A.; Pereyra, Marcelo; Betcke, Marta M.; McEwen, Jason D.

QuantifAI reconstructs radio interferometric images using scalable Bayesian uncertainty quantification relying on data-driven (learned) priors. It relies on the convex accelerated optimization algorithms in CRR (ascl:2401.016) and is built on top of PyTorch. QuantifAI also includes MCMC algorithms for posterior sampling.

[ascl:2404.025]
stringgen: Scattering based cosmic string emulation

Price, Matthew A.; Mars, Matthijs; Docherty, Matthew M.; Spurio Mancini, Alessio; Marignier, Augustin; McEwen, Jason D.

stringgen creates emulations of cosmic string maps with statistics similar to those of a single (or small ensemble) of reference simulations. It uses wavelet phase harmonics to calculate a compressed representation of these reference simulations, which may then be used to synthesize new realizations with accurate statistical properties, *e.g.*, 2 and 3 point correlations, skewness, kurtosis, and Minkowski functionals.

[ascl:2404.027]
s2fft: Differentiable and accelerated spherical transforms

S2FFT computes Fourier transforms on the sphere and rotation group using JAX (ascl:2111.002) or PyTorch. It leverages autodiff to provide differentiable transforms, which are also deployable on hardware accelerators (*e.g.*, GPUs and TPUs). More specifically, S2FFT provides support for spin spherical harmonic and Wigner transforms (for both real and complex signals), with support for adjoint transformations where needed, and comes with different optimisations (precompute or not) that one may select depending on available resources and desired angular resolution *L*.