ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Qiu, Yisheng'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2202.023] Starduster: Radiative transfer and deep learning multi-wavelength SED model

The deep learning model Starduster emulates dust radiative transfer simulations, which significantly accelerates the computation of dust attenuation and emission. Starduster contains two specific generative models, which explicitly take into account the features of the dust attenuation curves and dust emission spectra. Both generative models should be trained by a set of characteristic outputs of a radiative transfer simulation. The obtained neural networks can produce realistic galaxy spectral energy distributions that satisfy the energy balance condition of dust attenuation and emission. Applications of Starduster include SED-fitting and SED-modeling from semi-analytic models.

[ascl:2407.004] Forklens: Deep learning weak lensing shear

Forklens measures weak gravitational lensing signal using a deep-learning methoe. It measures galaxy shapes (shear) and corrects the smearing of the point spread function (PSF, an effect from either/both the atmosphere and optical instrument). It contains a custom CNN architecture with two input branches, fed with the observed galaxy image and PSF image, and predicts several features of the galaxy, including shape, magnitude, and size. Simulation in the code is built directly upon GalSim (ascl:1402.009).

[ascl:2412.013] Spectuner: Automated line identification of interstellar molecules

Spectuner identifies spectral lines of interstellar molecules automatically. The code uses XCLASS (ascl:1810.016) for the spectral line model and SciPy for the peak finder. Spectral fitting is performed using article swarm optimization and the peak matching loss function. From frequency in a unit of MHz and temperature in a unit of K, Spectuner returns the combined spectrum, identification of the combined spectrum, and the identification of all candidates.