➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
FieldInf is a collection of fast modern Fortran routines for computing exactly the background evolution and primordial power spectra of any single field inflationary models. It implements reheating without any assumptions through the "reheating parameter" R allowing robust inflationary parameter estimations and inference on the reheating energy scale. The underlying perturbation code actually deals with N fields minimally-coupled and/or non-minimally coupled to gravity and works for flat FLRW only.
Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.