➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.
WOLF processes FITS files and generates photometry files, annotated JPGs, opacity maps, background, transient detection and luminance changes detection. This software was used to process data for the Night Sky Live project.
WND-CHARM quantitatively analyzes morphologies of galaxy mergers and associate galaxies by their morphology. It computes a large set (up to ~2700) of image features for each image based on the WND-CHARM algorithm. It can then split the images into training and test sets and classify them. The software extracts the image content descriptor from raw images, image transforms, and compound image transforms. The most informative features are then selected, and the feature vector of each image is used for classification and similarity measurement using Fisher discriminant scores and a variation of Weighted Nearest Neighbor analysis. WND-CHARM's results comparable favorably to the performance of task-specific algorithms developed for tested datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.
CHLOE is an image analysis unsupervised learning algorithm that detects peculiar galaxies in datasets of galaxy images. The algorithm first computes a large set of numerical descriptors reflecting different aspects of the visual content, and then weighs them based on the standard deviation of the values computed from the galaxy images. The weighted Euclidean distance of each galaxy image from the median is measured, and the peculiarity of each galaxy is determined based on that distance.
UDAT is a pattern recognition tool for mass analysis of various types of data, including image and audio. Based on its WND-CHARM (ascl:1312.002) prototype, UDAT computed a large set of numerical content descriptors from each file it analyzes, and selects the most informative features using statistical analysis. The tool can perform automatic classification of galaxy images by training with annotated galaxy images. It also has unsupervised learning capabilities, such as query-by-example of galaxies based on morphology. That is, given an input galaxy image of interest, the tool can search through a large database of images to retrieve the galaxies that are the most similar to the query image. The downside of the tool is its computational complexity, which in most cases will require a small or medium cluster.
This code analyzes a dipole axis in the distribution of galaxy spin directions. The code takes as input a list of galaxies, their equatorial coordinates, and their spin directions. It then determines the statistical significance of possible dipole axis at any point in the sky by comparing the cosine dependence of the spin directions to the mean and standard deviation of the cosine dependence after 2000 runs with random spin directions. A code to analyze the binomial distribution of the spin directions using Monte Carlo simulation is also available.