➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
Given mass, radius, and equilibrium temperature, ExoMDN can deliver a full posterior distribution of mass fractions and thicknesses of each planetary layer. A machine-learning model for the interior characterization of exoplanets based on Mixture Density Networks (MDN), ExoMDN is trained on a large dataset of more than 5.6 million synthetic planets below 25 Earth masses. These synthetic planets consist of an iron core, a silicate mantle, a water and high-pressure ice layer, and a H/He atmosphere. ExoMDN uses log-ratio transformations to convert the interior structure data into a form that the MDN can easily handle.